2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 нумерация положительных рациональных чисел
Сообщение01.01.2010, 11:17 
Заслуженный участник
Аватара пользователя


11/01/06
3828
Определим функции $f\colon(0;+\infty)\to(0;+\infty)$ и $g\colon\mathbb N_0\to\mathbb Q\cap(0;+\infty)$ с помощью формул
$$f(x)=\frac1{\lfloor x\rfloor+1-\{x\}};$$
$$g(0)=1,\quad g(n+1)=f(g(n)).$$
Докажите, что $g$ --- биекция.

 Профиль  
                  
 
 Re: нумерация положительных рациональных чисел
Сообщение03.01.2010, 03:24 
Заслуженный участник


26/07/09
1559
Алматы
Простите, а как следует понимать выражение $\mathbb Q \cap (0; +\infty)$? Расшифруйте чайнику...

 Профиль  
                  
 
 Re: нумерация положительных рациональных чисел
Сообщение03.01.2010, 03:44 
Заслуженный участник
Аватара пользователя


11/01/06
3828
Circiter в сообщении #277136 писал(а):
Простите, а как следует понимать выражение $\mathbb Q \cap (0; +\infty)$?
Это множество положительных рациональных чисел.

 Профиль  
                  
 
 Re: нумерация положительных рациональных чисел
Сообщение05.01.2010, 15:57 
Заслуженный участник


26/07/09
1559
Алматы
Возможно опять глупость выйдет, но все-таки попробую порассуждать. :)

Насколько я понимаю, биективность $g$ равносильна отсутствию одинаковых элементов в последовательности $\{g(i)\}_{i=0}$. Если это не так, то дальше можете не читать. :)

Предлагаю два наброска:
  1. Как можно доказать, что все $g(i)$ различны (попарно)? Очевидно, что если в этой последовательности действительно нет одинаковых элементов, то $g$ должна быть непериодична, или, иначе говоря, уравнение $g(n+T)=g(n)$ не должно иметь решений относительно $T\in\mathbb{N}$. Пользуясь определением $g$ можно записать это уравнение в виде $$g(n)=\underbrace{f(f(\ldots f}_{T}(g(n))\ldots)),$$ и, таким образом, свести задачу к доказательству несуществования рациональных неподвижных точек композиции $T>0$ "штук" $f$ (i.e. неподвижных точек последовательных итераций $f$ или периодичных точек этого отображения).

    Как это доказать, незнаю. Интересно, следует ли несуществование периодичных точек $f$ из несуществования неподвижной точки $x=f(x)$? Наверное нет...
  2. Следует ли биективность из однозначности (сюръективности) и обратимости (инъективности)? Если да, то достаточно (и необходимо) показать, что $g$ однозначна и обратима. Функция $g$ определяется через итерации $f$ и такая композиция нескольких копий $f$ является однозначной функцией, так как сама $f$ -- однозначна. Кроме того, эта композиция обратима, так как $f$ -- обратима (это легко проверить, пример обратной функции:$f^{-1}=\lfloor x^{-1}\rfloor+1-\{x^{-1}\}$). Получается, что $g$ тоже обладает этими свойствами, что особенно хорошо видно если записать определение этого отображения как $g(n)=f(f(\ldots f(1)\ldots))$, где $f$ входит в выражение ровно $n$ раз. То есть значение $g(n)$ зависит только от количества итераций $f$.

Э-э-э, бред какой-то получился... Не, точно бред, хотя-бы потому, что рациональность не эксплуатируется (разве что для удобства округления вниз и взятия дробной части). В общем, дайте подсказку. :)

 Профиль  
                  
 
 Re: нумерация положительных рациональных чисел
Сообщение05.01.2010, 22:55 


27/01/07
67
Тамбов
А задача-то красивейшая.
Если я нигде не наврал, то я решил ее построив $g^{-1}$ с помощью конструкции, практически совпадающей с этой. Там только пару деталей изменить надо.

 Профиль  
                  
 
 Re: нумерация положительных рациональных чисел
Сообщение07.01.2010, 09:23 
Аватара пользователя


25/03/09
94
Circiter в сообщении #277676 писал(а):
Следует ли биективность из однозначности (сюръективности) и обратимости (инъективности)?
Да.

Circiter в сообщении #277676 писал(а):
Получается, что $g$ тоже обладает этими свойствами, ...
Нет. Попробуйте, например, с функцией $f(x)=x$.

----

$\frac11, (1)$

$\frac12,\frac21,  (2)$

$\frac13,\frac32,\frac23,\frac31,  (4)$

$\frac14,\frac43,\frac35,\frac52,\frac25,\frac53,\frac34,\frac41,  (8)$

$\frac15,\frac54,\frac47,\frac73,\frac38,\frac85,\frac57,\frac72,\frac27,\frac75,\frac58,\frac83,\frac37,\frac74,\frac45,\frac51, (16)$

$...$ двоично тут как-то все :)

И вот, что-то очень похожее:
Изображение

 Профиль  
                  
 
 Re: нумерация положительных рациональных чисел
Сообщение08.01.2010, 05:10 


27/01/07
67
Тамбов
Что мне не нравится в моем решении - это необходимость рассматривать 5 случаев. Обозначая $d_n$ строку из $n$ цифр $d$:

\begin{align*}
\dots 00&\xrightarrow{+1}\dots 01 &&\longleftrightarrow & [0;k+1,\dots]&\xrightarrow f[1;k,\dots]\\
\dots 10&\xrightarrow{+1}\dots 11 &&\longleftrightarrow & [0;1,k,\dots]&\xrightarrow f[k+1;\dots]\\
\dots 001_n&\xrightarrow{+1}\dots 010_n &&\longleftrightarrow & [n;k+1,\dots]&\xrightarrow f[0;n,1,k,\dots]\\
\dots 101_n&\xrightarrow{+1}\dots 110_n &&\longleftrightarrow & [n;1,k,\dots]&\xrightarrow f[0;n,k+1,\dots]\\
1_n&\xrightarrow{+1}10_n &&\longleftrightarrow & [n]&\xrightarrow f[0;n,1]\\
\end{align*}

Есть ли способ избежать такого разбора вариантов?

 Профиль  
                  
 
 Re: нумерация положительных рациональных чисел
Сообщение09.01.2010, 12:15 
Заслуженный участник
Аватара пользователя


11/01/06
3828
Честно говоря, удивлён, что никто до сих пор не кинул ссылку. Ладно, раскрою карты. Решение есть, например, в "Доказательствах из Книги". Половину решения можно посмотреть здесь.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 8 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group