2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4  След.
 
 Re: Вопрос жизни и смерти!...синус и косинус
Сообщение29.11.2009, 18:21 
Модератор
Аватара пользователя


13/08/09
2396
Батенька, ну зачем же вы так...
Перечтайте внимательно условие задачи.... Что вам дано, что надо найти....

упс, опередили...

 Профиль  
                  
 
 Re: Вопрос жизни и смерти!...синус и косинус
Сообщение29.11.2009, 18:21 


29/11/09
54
Непонял...

 Профиль  
                  
 
 Re: Вопрос жизни и смерти!...синус и косинус
Сообщение29.11.2009, 18:23 
Модератор
Аватара пользователя


13/08/09
2396
danil в сообщении #266453 писал(а):
Непонял...

Начнем с начала....

Какая была задача?

 Профиль  
                  
 
 Re: Вопрос жизни и смерти!...синус и косинус
Сообщение29.11.2009, 18:23 


29/11/09
54
ТОгда нужно подставлять $\sin^2a-\cos^2 a$
в формулу $\sin(2a)=1-p^2$

 Профиль  
                  
 
 Re: Вопрос жизни и смерти!...синус и косинус
Сообщение29.11.2009, 18:23 
Заслуженный участник
Аватара пользователя


13/08/08
14495
В задании у Вас $\sin a - \cos a = p$

 Профиль  
                  
 
 Re: Вопрос жизни и смерти!...синус и косинус
Сообщение29.11.2009, 18:24 


29/11/09
54
Вычислите sin(2а), если sina - cosа = р.

-- Вс ноя 29, 2009 18:25:00 --

Да тогда опять формула сокращенного уравнения???

-- Вс ноя 29, 2009 18:26:43 --

-- Вс ноя 29, 2009 18:28:58 --

Или я что-то не понимаю...мы должны подсталять $p$ в получившуюся формулу $\sin(2a)=1-p^2$

 Профиль  
                  
 
 Re: Вопрос жизни и смерти!...синус и косинус
Сообщение29.11.2009, 18:29 
Модератор
Аватара пользователя


13/08/09
2396
danil,
итак, вам дан никий угол $a$, для которого $\sin a-\cos a =p$ . Совершенно конкретное такое $p$....

Вам надо найти $\sin (2a) $ через известные величины, одна из которых $p$ ..У вас получилось $1-p^2$...

Все радуюстся и пьют шампанское (если по возрасту можно)

 Профиль  
                  
 
 Re: Вопрос жизни и смерти!...синус и косинус
Сообщение29.11.2009, 18:30 


29/11/09
54
Значит конечный ответ $\sin(2a)=1-p^2$

Да?????????

 Профиль  
                  
 
 Re: Вопрос жизни и смерти!...синус и косинус
Сообщение29.11.2009, 18:32 
Модератор
Аватара пользователя


13/08/09
2396
Ну конечно...

 Профиль  
                  
 
 Re: Вопрос жизни и смерти!...синус и косинус
Сообщение29.11.2009, 18:33 


29/11/09
54
МОЕЙ РАДОСТИ НЕТ ПРИДЕЛА!!!!!! спасибо большое вы буквально спасли мне жизнь))) Очень большое спасибо!!!

 Профиль  
                  
 
 Re: Вопрос жизни и смерти!...синус и косинус
Сообщение29.11.2009, 18:36 
Заслуженный участник
Аватара пользователя


13/08/08
14495

(Оффтоп)

Да Вы просто глумитесь, сударь!
Впрочем, ради ассистирования жантильнейшей из особ, можно и потерпеть.

Вам по условию дано $\sin a - \cos a = p$

Возведём это равенство в квадрат

$\sin^2 a -2\sin a\cos a  + \cos^2 a = p^2$

Перегруппируем члены (пардон-с), применим основное тригонометрическое тождество и формулу синуса двойного угла.

$(\sin^2 a+ \cos^2 a ) -2\sin a\cos a   = p^2$

$1 -\sin 2a   = p^2$

Перенесём 1 в правую часть и умножим равенство на -1.

$\sin 2a   = 1-p^2$

 Профиль  
                  
 
 Re: Вопрос жизни и смерти!...синус и косинус
Сообщение29.11.2009, 18:38 


29/11/09
54
я уже понял спасибо большое)))

 Профиль  
                  
 
 Re: Вопрос жизни и смерти!...синус и косинус
Сообщение29.11.2009, 18:39 
Модератор
Аватара пользователя


13/08/09
2396
Поздравляю! Рады были вам помочь.

Следующее занятие - русский язык! :twisted:
Не обижайтесь, просто я органически не переношу ошибок в родном языке... Вы молодец, что не боитесь просить помощи и сами работаете - признак хорошего ученика... Обращайтесь, если что... Здесь народ дружелюбней, чем я. :wink:

 Профиль  
                  
 
 Re: Вопрос жизни и смерти!...синус и косинус
Сообщение29.11.2009, 18:43 
Заслуженный участник


11/05/08
32166

(Оффтоп)

между прочим, эта загадочнейшая и таинственнейшая формула -- про синуса двойного угла, ну и пара ещё там -- протянулась уже почти на три странички.

И явно грозит на этом не останавливаться.

Ну а я что... я лишь рад, что в меру своих скромных способностей способствовал сошествию... или соитию... или как там...

 Профиль  
                  
 
 Re: Вопрос жизни и смерти!...синус и косинус
Сообщение29.11.2009, 21:42 
Заслуженный участник


27/04/09
28128
danil в сообщении #266466 писал(а):
НЕТ ПРИДЕЛА!!!!!!
Будут, будут и пределы! через года три... :lol:

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 49 ]  На страницу Пред.  1, 2, 3, 4  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group