2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.



Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Шар в Банаховом пространстве
Сообщение04.11.2009, 11:20 
Заслуженный участник


09/05/08
1155
Новосибирск
id в сообщении #258158 писал(а):
Цитата:
and $F$ is traditionally $\mathbb R$ or $\mathbb C$
By the way, why?
I guess, you've got an answer in the same message: :-)
id в сообщении #258158 писал(а):
sure, such spaces aren't of much use.
However, there are theories of "normed" spaces with rather weird "scalars." Moreover, the values of a norm are sometimes allowed to be weird. For instance, there are lattice-normed spaces. Vector lattices are suitable in this case, since they possess a modulus $|{\cdot}|$ required in the equality $\|\lambda x\|=|\lambda|\|x\|$ mentioned by Профессор Снэйп.

 Профиль  
                  
 
 Re: Шар в Банаховом пространстве
Сообщение04.11.2009, 11:43 
Заслуженный участник


05/06/08
1097
Ah, now I see.
The norm is real-valued function, so all experiments with $Z_p$ are doomed to be a waste of effort.

Thanks. :)

 Профиль  
                  
 
 Re: Шар в Банаховом пространстве
Сообщение04.11.2009, 13:37 
Заслуженный участник


26/07/09
1559
Алматы
AGu в сообщении #258172 писал(а):
For instance, there are lattice-normed spaces. Vector lattices are suitable in this case

What about the Banach lattices? This is an example of complete normed vector lattices, thus such lattices are Banach spaces (indeed, we can study embeddings of Banach spaces into Banach lattices.)

 Профиль  
                  
 
 Re: Шар в Банаховом пространстве
Сообщение04.11.2009, 13:51 
Заслуженный участник


09/05/08
1155
Новосибирск
Circiter в сообщении #258211 писал(а):
AGu в сообщении #258172 писал(а):
For instance, there are lattice-normed spaces. Vector lattices are suitable in this case
What about the Banach lattices?
What do you mean by "what about"? :-)
A Banach lattice is a normed space in the usual sense
(the scalars are real and the norm is real-valued).

P.S. The topic seems to become an offtopic. :-)

 Профиль  
                  
 
 Re: Шар в Банаховом пространстве
Сообщение04.11.2009, 14:38 
Заслуженный участник


26/07/09
1559
Алматы
2AGu
Цитата:
What do you mean by "what about"?

"What about" means "try this fresh idea." :)

Цитата:
A Banach lattice is a normed space in the usual sense

But additionally it's complete, so it's a Banach, isn't it?

P.S.: In the first place I keep in view the original problem on existence of a finite countable ball in a Banach space.

 Профиль  
                  
 
 Re: Шар в Банаховом пространстве
Сообщение04.11.2009, 14:43 
Заслуженный участник


09/05/08
1155
Новосибирск
Circiter в сообщении #258222 писал(а):
"What about" means "try this fresh idea." :)
Hmm... What idea? :-)
Circiter в сообщении #258222 писал(а):
Цитата:
A Banach lattice is a normed space in the usual sense
But additionally it's complete, so it's a Banach, isn't it?
Yes, it is. But a ball in a nonzero Banach lattice (over $\mathbb R$) cannot be finite, since a Banach lattice is a normed space (over $\mathbb R$).

 Профиль  
                  
 
 Re: Шар в Банаховом пространстве
Сообщение04.11.2009, 14:59 
Заслуженный участник


26/07/09
1559
Алматы
2AGu
Цитата:
But a ball in a nonzero Banach lattice (over $\mathbb R$) cannot be finite

It's not obvious statement (for me, at least,) can you prove it? How the norm can prohibit finiteness of subsets?

 Профиль  
                  
 
 Re: Шар в Банаховом пространстве
Сообщение04.11.2009, 15:21 
Заслуженный участник


09/05/08
1155
Новосибирск
Circiter в сообщении #258226 писал(а):
Цитата:
But a ball in a nonzero Banach lattice (over $\mathbb R$) cannot be finite
It's not obvious statement (for me, at least,) can you prove it?
It was proven in my first message in this thread. :-) A ball is convex and is thus at least continual. This holds true for every nonzero normed space and, in particular, for every nonzero Banach lattice.

 Профиль  
                  
 
 Re: Шар в Банаховом пространстве
Сообщение04.11.2009, 17:34 


30/10/09
26
Thanks guys. :) This was really nice (nice talk). I appreciate it. Еще раз спасибо. :)

Может кто-то од вас посмотреть мои первые проблем (topic26320.html). Это один из моих проблем домашнего задания. Я до сих пор не решили ее, и до сегодняшнего утра он остался один... :|

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 24 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group