2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Уравнение Бюргерса
Сообщение17.09.2009, 09:56 
Дано дифференциальное уравнение $u_t+uu_x=0, u(x,0)=\frac{1}{1+x^2}$. Решение этого уравнения $u(x,t)=\frac{1}{1+(x-ut)^2}$. Теперь необходимо найти время когда происходит градиентный шок, то есть $u_x=\infty$. Каким образом это можно сделать, если функция $u$ это неявная функция? Дифференцирование этой функции никакого упрощения не дало. Сделал $u=f(x-ut), f(x)=\frac{1}{1+x^2}, F=u-f(x-ut)$
$\frac{\partial u}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial u}}=\frac{f'(x-ut)}{1-tf'(x-ut)}$.

 
 
 
 Re: Уравнение Бюргерса
Сообщение17.09.2009, 10:43 
Корректней использовать термин - градиентная катастрофа. Посмотрите например Б.Л. Рождественский, Н.Н. Яненко "Системы квазилинейных уравнений" параграф 9 гл. 1. Решение методом характеристик там приведено для кусочно-линейного начального профиля при $t=0$.

 
 
 
 Re: Уравнение Бюргерса
Сообщение17.09.2009, 10:55 
А есть ли какой-нибудь источник в интернете? И что не правильно, в том решении которое я написал?

 
 
 
 Re: Уравнение Бюргерса
Сообщение17.09.2009, 11:19 
Если рисовать кривые $U(x)$ при фиксированных $t$ - то при некотором значение $t_k $нарушится однозначность функции $U(x)$ - задние "частицы" догонят "передние" и волна обрущится. В любом мат пакете можете построить картинки и даже саму поверхность.

Изображение

Я не увидел сразу, что Вы там внесли исправления. Решение у Вас правильное. А вот Ваше дифференцирование что-то смущает. Кстати вот так выглядят здесь характеристики. Они тут прямые (поскольку в правой части вашего уравнения стоит 0). По оси ординат отложено время. Там на картинке небольшая ошибка в начальных условиях - нужно $x(0)=x0$.

http://pages.rshu.ru/mamop/node9.html - например здесь можно посмотреть... google вам в помощь...

 
 
 
 Re: Уравнение Бюргерса
Сообщение18.09.2009, 04:23 
На самом деле, действительно, дифференцирование было не правильным. Я его исправил.
Проблема возникает, когда $1-tf'(x-ut)=0$. Решая это уравнение получаем время.

 
 
 
 Re: Уравнение Бюргерса
Сообщение18.09.2009, 09:11 
Как вариант - можно найти уравнение огибающей для семейства характеристик и острие "клювика" даст момент наступления градиентной катастрофы (по картинке примерно $t=1.8$).

 
 
 
 Re: Уравнение Бюргерса
Сообщение18.09.2009, 11:37 
Аватара пользователя
Yu_K в сообщении #244331 писал(а):
(по картинке примерно $t=1.8$).
По картинке получается $t=1.5396$

 
 
 
 Re: Уравнение Бюргерса
Сообщение18.09.2009, 12:50 
Мне кажется можно точно найти это время. Запишем выражение для частной производной функции $U$ в виде

$U_x\{[ 1+ (x-Ut)^2 ]^2-2(x-Ut)\}=-2(x-Ut)$

Очевидно $U_x$ равна бесконечности ,если выражение в фигурных скобках равно $0$,т.е. при условии

$\dfrac {2(x-Ut)t}{[1+(x-Ut)^2]^2}=1$. Обозначим $y=(x-Ut)$ и исследуем на экстремум функцию $\dfrac {2y}{[1+y^2]^2}$ эта функция достигает максимума равного $ \dfrac{16}{25}$ при $y= \dfrac12$. Поэтому искомый момент времени определится из условия (отметим, что выбором $x$ мы можем придать $y$любое положительное значение в любой момент $t$)

$ \dfrac {16t}{25} =1$ или $t= \dfrac {25}{16}=1.5625$

 
 
 
 Re: Уравнение Бюргерса
Сообщение18.09.2009, 13:15 
$ 8 \sqrt { 3 } /9$ - такой ответ, если повнимательнее посмотреть на картинку...

 
 
 
 Re: Уравнение Бюргерса
Сообщение19.09.2009, 05:27 
Вопрос - как построить разрывное решение после наступления ГК? Можно ли для этих начальных данных выписать аналитические формулы?

 
 
 
 Re: Уравнение Бюргерса
Сообщение19.09.2009, 21:38 
Методом, приведенным в моем предыдущем сообщении, можно точно вычислить момент град. катастрофы $t_0$ для достаточно общего класса функций $U(x,0)=f(x)$. Пусть, например, $f(x)$ положительна, монотонно стремится к$0$ при $x$, стремящемся к бесконечности, $f'(0)=0$. Тогда :

$t_0= \dfrac 1{max|f'(x)|}$, где $max$ ищем по $x \in (0, \infty)$. Получается, что $t_0$ зависит лишь от $max|f'(x)|$.

mihiv, хочу лишь подсказать Вам, что имеется команда \to для записи "стремления", например, $x\to 0$, $\lim_{x\to\infty}f(x)=0$, $\lim\limits_{x\to\pm\infty}f(x)=0.$ /AKM

 
 
 
 Re: Уравнение Бюргерса
Сообщение20.09.2009, 06:15 
mihiv Как то смущает то, что не совпадают значения критических времен для метода характеристик и вашего. Там есть ошибка в математике у вас - максимум функции немного в другой точке - но даже если ее исправить - все равно похоже нет соответствия.

Для определения времени наступления ГК берутся две характеристики, выпущенные из разных точек $x_0$ и $x_1$, находится момент времени, соответствующий их пересечению - получается функция $t= w(x_0,x_1)$ и затем ищется $t_k$ - минимум этой функции двух переменных.

Мой вопрос про аналитические формулы относился к решению задачи $u(x,t)$ при $t>t_k$. Где ставить разрыв? Понятно из каких функций будет конструироваться решение, но скорость ударной волны (разрыва) здесь не постоянна, в отличии от случая традиционных ступенчатых начальных данных. Здесь УВ будет двигаться вправо по "непостоянному потоку" и вопрос как определить здесь траекторию движения разрыва? Численные картинки у меня есть - если кому-то интересно, могу здесь привести.

 
 
 
 Re: Уравнение Бюргерса
Сообщение20.09.2009, 18:58 
Yu_K в сообщении #244888 писал(а):
Численные картинки у меня есть - если кому-то интересно, могу здесь привести.

Если не сложно, покажите картинки.

 
 
 
 Re: Уравнение Бюргерса
Сообщение20.09.2009, 21:42 
Yu_k вы правы, максимум функции $ \dfrac {2y}{(1+y^2)^2}$ я посчитал неправильно,на самом деле он достигается в точке $y= \dfrac 1{ \sqrt3}$ и равен $ \dfrac {9}{8 \sqrt3}$ и тогда $t_0= \dfrac {8 \sqrt3}{9}$.В то же время в вашем сообщении написано:

Yu_K в сообщении #244377 писал(а):
$ 8 \sqrt { 3 } /9$ - такой ответ, если повнимательнее посмотреть на картинку...
Что же, получается совпадение?

 
 
 
 Re: Уравнение Бюргерса
Сообщение21.09.2009, 05:01 
Вопрос mihiv - всегда ли достигается максимум Вашей функции на решении? Если достигается - то все нормально... Но например, для неоднородного уравнения Бюргерса (с ненулевой правой частью $g(u)$) характеристики будут кривыми и про начальный профиль решение быстро "забудет".

Картинки ниже. Профиль УВ размазан немного за счет схемной вязкости -

Изображение

 
 
 [ Сообщений: 15 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group