2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3
 
 Re: Список вездесущих математических конструкций
Сообщение22.06.2009, 11:45 
Заслуженный участник
Аватара пользователя


28/09/06
10851
Свободный Художник в сообщении #223871 писал(а):
Если сконструировали “намеренно”, то для чего? С каким таким конкретным намерением?

Я так полагаю, что для удобства. Назначение теоретического знания, как я понимаю, заключается в том, чтобы через относительно небольшое количество понятий описать огромное количество явлений. Как это сделать прекрасно иллюстрирует пример с описанием объектов через $n$ бинарных (т.е. принимающих одно из двух значений - либо он есть, либо его нет) признаков. Очевидно, что так может быть описано до $2^n$ различных объектов - величина, экспоненциально большая относительно количества признаков.

Поэтому "хорошие" свойства таковы, что с одной стороны - встречаются достаточно часто, а с другой стороны - не являются тривиальными, т.е. достаточно часто встречается и их отсутствие. К тому же "хорошо" когда разные свойства достаточно слабо коррелированы друг с другом. Судя по всему, конструируя абстрактные математические понятия, человеческий разум в итоге "нащупывает" множество таких понятий и принимает их в качестве достаточно "фундаментальных".

Свободный Художник в сообщении #223871 писал(а):
Почему именно это (а не иное, тоже могущее быть “намеренно” сконструированным) отношение используется даже в аксиоматических версиях описания реальности?!!!

"Почему именно это", - вероятно это вопрос, на который у нас никогда не будет однозначного ответа. Задачу "разделить квадрат на четыре равных квадрата с помощью двух бинарных признаков" можно решить двояко:
1. Определить признак "находится слева" и признак "находится сверху".
2. Или вместо второго признака определить признак "находится на диагонали из верхнего левого угла".

Оба способа по эффективности одинаковы (разбивают всё множество возможностей на одинаковые фрагменты с помощью одинакового количества бинарных признаков). Почему мы должны считать первый способ "более удобным" и увековечить понятия "верх" и "лево" как "первичные", а понятие "на диагонали" считать производным? По-моему, этому могут быть только исторические причины.

Свободный Художник в сообщении #223871 писал(а):
Например, в аксиоматической формализации фрагмента термодинамики, предложенной Эрнстом Махом:
http://www.px-pict.com/9/6/6/1/2.html#3

Это хороший пример. Он демонстрирует, что понятие "температура" является сконструированным под уже заранее "желаемую" нами транзитивность. Мы ведь помним, что есть и неравновесные состояния, которые не укладываются в эту схему...

 Профиль  
                  
 
 Re: Список вездесущих математических конструкций
Сообщение23.06.2009, 01:30 


20/03/08
421
Минск
epros в сообщении #223920 писал(а):
Назначение теоретического знания, как я понимаю, заключается в том, чтобы через относительно небольшое количество понятий описать огромное количество явлений. Как это сделать прекрасно иллюстрирует пример с описанием объектов через $n$ бинарных (т.е. принимающих одно из двух значений - либо он есть, либо его нет) признаков. Очевидно, что так может быть описано до $2^n$ различных объектов - величина, экспоненциально большая относительно количества признаков.

Поэтому "хорошие" свойства таковы, что с одной стороны - встречаются достаточно часто, а с другой стороны - не являются тривиальными, т.е. достаточно часто встречается и их отсутствие. К тому же "хорошо" когда разные свойства достаточно слабо коррелированы друг с другом.

Конструкция, которую Вы сейчас описали (задание $2^n$ объектов при помощи $n$ бинарных признаков), сама по себе является “вездесущей”. Меня интересует, готовы ли Вы признать, что код Хэмминга фактически основан на этой конструкции?
http://www.px-pict.com/10/4/5/1/1.html

$n$ бинарных признаков отождествим с $n$ кругами на диаграмме Венна; значение данного признака равно $1$, если внутри круга нечетное число единиц, и равно нулю, если оно четное.
Объекты, определяемые набором из $n$ бинарных признаков, это области, где может произойти или не произойти ошибка.

 Профиль  
                  
 
 Re: Список вездесущих математических конструкций
Сообщение23.06.2009, 10:02 
Заслуженный участник
Аватара пользователя


28/09/06
10851
Свободный Художник в сообщении #224125 писал(а):
Конструкция, которую Вы сейчас описали (задание $2^n$ объектов при помощи $n$ бинарных признаков), сама по себе является “вездесущей”.

Эдак Вы вообще любую конструкцию объявите "вездесущей". :)
Я ведь всего лишь привёл пример одного из возможных способов как "через относительно небольшое количество понятий описать огромное количество явлений".

В общем, насколько я понимаю, Ваше понятие "вездесущности" соответствует тому, что обычно называют "абстрактностью", т.е. достаточно высокому уровню общности понятия.

 Профиль  
                  
 
 Re: Список вездесущих математических конструкций
Сообщение23.06.2009, 23:13 
Заслуженный участник


18/03/07
1068
Шрейдер вспомнился…

Рассмотрим множество всех почти транзитивных бинарных отношений над $\mathbb N$. Если почти все они окажутся транзитивными, то транзитивность можно считать «фундаментальным» свойством отношений над $\mathbb N$.

В качестве формализации понятия «почти транзитивности» можно выбрать, к примеру, слабую транзитивность: $(xRy) \land (yRz) \land (x\neq z) \to xRz$.

 Профиль  
                  
 
 Re: Список вездесущих математических конструкций
Сообщение24.06.2009, 10:21 


20/03/08
421
Минск
epros в сообщении #224163 писал(а):
Свободный Художник в сообщении #224125 писал(а):
Конструкция, которую Вы сейчас описали (задание $2^n$ объектов при помощи $n$ бинарных признаков), сама по себе является “вездесущей”.

Эдак Вы вообще любую конструкцию объявите "вездесущей". :)
Я ведь всего лишь привёл пример одного из возможных способов как "через относительно небольшое количество понятий описать огромное количество явлений".

А приведите, пожалуйста, еще один. Столь же популярный.
epros в сообщении #224163 писал(а):
В общем, насколько я понимаю, Ваше понятие "вездесущности" соответствует тому, что обычно называют "абстрактностью", т.е. достаточно высокому уровню общности понятия.

Разумеется, нет. Существуют весьма абстрактные, но совершенно бесполезные конструкции и понятия.
Я думаю, “вездесущими” следует назвать понятия не только абстрактные, но и реально интенсивно используемые в самых различных областях.

Хотелось бы составить список может, примерно, из двух десятков таких понятий (конструкций), частично упорядоченный по степени их “вездесущности”.

 Профиль  
                  
 
 Re: Список вездесущих математических конструкций
Сообщение24.06.2009, 10:44 
Заслуженный участник
Аватара пользователя


28/09/06
10851
Свободный Художник в сообщении #224448 писал(а):
А приведите, пожалуйста, еще один. Столь же популярный.

Пятью аксиомами Пеано определяется бесконечное количество натуральных чисел.
По-моему, достаточно популярный пример. :)

Свободный Художник в сообщении #224448 писал(а):
epros в сообщении #224163 писал(а):
В общем, насколько я понимаю, Ваше понятие "вездесущности" соответствует тому, что обычно называют "абстрактностью", т.е. достаточно высокому уровню общности понятия.

Разумеется, нет. Существуют весьма абстрактные, но совершенно бесполезные конструкции и понятия.
Я думаю, “вездесущими” следует назвать понятия не только абстрактные, но и реально интенсивно используемые в самых различных областях.

О, да Вы, оказывается, где-то в своих базовых ценностях держите реализм. Одобряю. Ибо есть множество математиков, которые (на мой сугубо субъективный взгляд) с удовольствием занимаются этими самыми "абстрактными, но совершенно бесполезными конструкциями", полагая, что математика - это своего рода пища для разума, для реальных применений вовсе и не обязательная.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 36 ]  На страницу Пред.  1, 2, 3

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group