2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Планиметрия, две окружности, метод инверсий
Сообщение15.06.2009, 19:26 
Задача: Две окружности пересекаются в точке А и В, ближе к точке А проведена общая касательная к двум окружностям, касание соответственно в точках М и N. Через точки M,A,N проведена окружность.Доказать, что радиус этой окружности равен среднему геометрическому двух радиусов данных окружностей.Решить методом инверсии(Но не обязательно). Заранее большое спасибо.Задача нужна очень, очень, очень!!!

 
 
 
 Re: Инверсия. Помогите решить, пожалуйста, задачу.
Сообщение15.06.2009, 19:50 
Аватара пользователя
Здорово. Это тянет на теорему.

 
 
 
 Re: Инверсия. Помогите решить, пожалуйста, задачу.
Сообщение15.06.2009, 20:28 
Не знаю как инверсией, но задача довольно неплохо решается в лоб.
Опустим из точки $A$ перпендикуляр на $MN$, основание перпендикуляра обозначим $H$. Пусть $AH=h$, $MH=h_1$ и $NH=h_2$. Если $r_1$ и $r_2$ - радиусы окружностей, то
$h_1^2+(r_1-h)^2=r_1^2$ (из прямоугольного треугольника $AMH$)
$h_2^2+(r_2-h)^2=r_2^2$ (из $ANH$)
Тогда
$AM=\sqrt{h_1^2+h^2}=\sqrt{2hr_1}$
$AN=\sqrt{h_2^2+h^2}=\sqrt{2hr_2}$
По известной формуле радиус описанной вокруг $MAN$ окружности будет равен:
$R=\frac{MN\cdot AM\cdot AN}{4S_{MAN}}=\frac{MN\cdot AM\cdot AN}{4\frac{1}{2}MN\cdot AH}=$ $\frac{AM\cdot AN}{2AH}=\frac{\sqrt{2hr_1}\sqrt{2hr_2}}{2h}=\sqrt{r_1r_2}$ - ч.т.д.
 ! 
(Приведено полное решение учебной задачи)

 
 
 
 Re: Инверсия. Помогите решить, пожалуйста, задачу.
Сообщение15.06.2009, 21:15 
я не понимаю, как связаны радиусы c h?

 
 
 
 Re: Инверсия. Помогите решить, пожалуйста, задачу.
Сообщение15.06.2009, 21:24 
А я не понимаю, что Вы не понимаете... Я пользовался только теоремой Пифагора (если не считать формулы для радиуса описанной окружности). Начертите рисунок к задаче и внимательно на него посмотрите. Все остальное я написал (за что и получил справедливое предупреждение). Но это так, к слову...

 
 
 
 Re: Инверсия. Помогите решить, пожалуйста, задачу.
Сообщение15.06.2009, 21:45 
Извините, но у меня по рисунку получается.

у нас есть две окружности, которые пересекаются в двух точках, в точке А и в точке В. Ближе к точке А проводим общую касательную к этим окружностям.
Прямая касается первую окружность в точке М и касается вторую окружность в точке N
В итоге у нас три точки M, N, A. Через эти точки мы провели окружность.
По моему рисунку получается, что h и r1 параллельны, а по доказательству получается, что r1 это гипотенуза.
Помогите разобраться в чем я не права

 
 
 
 Re: Инверсия. Помогите решить, пожалуйста, задачу.
Сообщение15.06.2009, 21:59 
Все правильно у Вас по рисунку получается. Это я слегка опечатался. Теоремы Пифагора приведены для треугольников $AM'O_1$ и $AN'O_2$, где $M'$ - основание перпендикуляра, опущенного из т. $M$ на радиус $O_1M=r_1$ ($O_1$ - центр окружности, радиус которой равен $r_1$), а $N'$ - сами догадаетесь, наверное :).

 
 
 
 Re: Инверсия. Помогите решить, пожалуйста, задачу.
Сообщение15.06.2009, 22:13 
Может вам покажется вопрос глупым, но если О1М является радиусом, то есть перпендикуляром к касательной в точке М, как можно из точки М опустить перпендикуляр на О1М, жалко, что здесь нельзя нарисовать, я бы уже давно поняла

 
 
 
 Re: Инверсия. Помогите решить, пожалуйста, задачу.
Сообщение15.06.2009, 22:20 
Жалко, что я все время опечатываюсь (давая Вам, таким образом, возможность самой подумать над задачей). Перпендикуляры следует опускать, конечно же, из точки $A$. Просто я пишу все это без рисунка, поэтому и ошибаюсь постоянно...

 
 
 
 Re: Инверсия. Помогите решить, пожалуйста, задачу.
Сообщение15.06.2009, 22:43 
Как я поняла мы все равно должны всё свести к треугольнику AMN , И выразить радиус по формуле описанной окружности

 
 
 
 Re: Инверсия. Помогите решить, пожалуйста, задачу.
Сообщение16.06.2009, 08:03 
Ну, в общем-то, да. С остальным-то разобрались?

 
 
 
 Re: Инверсия. Помогите решить, пожалуйста, задачу.
Сообщение16.06.2009, 08:07 
Да, разобралась большое спасибо.

 
 
 [ Сообщений: 12 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group