2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 abc гипотеза.
Сообщение06.02.2009, 09:37 
Заслуженный участник


09/02/06
4397
Москва
Параллельно с гипотезой Римана хотелось бы обсудить и эту не менее важную гипотезу. Тем более здесь за последнее время достигнуты хорошие результаты. Например, из результатов K. Gyory and K.Yu (2007) получается
$\ln c<\frac{2^{10t+22}}{t^{t-4}}R(\ln R)^t, R=\mathop{\rm rad}(abc)$, $t$ количество различных простых делителей $R$.
Из него легко получается, что число решений $x!+1=y^z,z\ge 2$ в натуральных числах конечно. Эта задача здесь обсуждалась.

 Профиль  
                  
 
 
Сообщение06.02.2009, 11:20 
Супермодератор
Аватара пользователя


29/07/05
8248
Москва
 !  PAV:
Опишите гипотезу более подробно. В частности, поясните обозначения. Кроме того, в формулах замените выражения вида $ln c$ на $\ln c$. Объясните, что такое $rad$ и замените его на $\mathop{\rm rad}$ или что-нибудь в этом духе.

 Профиль  
                  
 
 
Сообщение06.02.2009, 11:51 
Заслуженный участник


09/02/06
4397
Москва
abc гипотеза для натуральных чисел формулируется так. Для любых взаимно простых натуральных чисел: a,b,c=a+b выполняется следующее неравенство:
$\forall \epsilon>0$ существует $C_{\epsilon}$, такой что $c<C_{\epsilon} (rad(abc))^{1+\epsilon}$.
Радикал натурального числа определяется как произведение простых делителей (по одному разу), например $rad(6)=6,rad(8)=2,rad(12)=6,...$, т.е. как частный случай радикала идеала, когда натуральным числам сопоставляются соответствующие главные идеалы.
Приложений этой гипотезы в теории чисел пожалуй больше, чем приложений гипотезы Римана.
Мне хотелось бы скачать результаты K.Gyuory (2007) и самому убедится в их справедливости. Если кто может указать ссылки на них, буду весьма признателен.

 Профиль  
                  
 
 
Сообщение06.02.2009, 16:35 
Заслуженный участник
Аватара пользователя


07/03/06
1898
Москва
Вот некоторая информация, но самой статьи не нашел.

 Профиль  
                  
 
 
Сообщение06.02.2009, 17:24 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Руст
juna
Если потерпите до понедельника, пришлю статью.

Добавлено спустя 1 минуту 48 секунд:

Győry, K.(H-AOS-NTR)
On the $abc$ conjecture in algebraic number fields.
Acta Arith. 133 (2008), no. 3, 281--295.

Let $K$ be a number field. The radical of the triple $(a,b,c)\in(K^*)^3$ is defined as $$N_K(a,b,c)=\prod_v N({\germ p})^{{\rm ord}_{\germ p}p},$$ where $p$ is the rational prime below ${\germ p}$ and the product is taken over all the finite places $v$ such that $|a|_v$, $|b|_v$ and $|c|_v$ are not equal. The $abc$ conjecture asserts that the relative height $$H_K(a,b,c)=\prod_{v\in M_K} max{|a|_v,|b|_v,|c|_v}$$ of any triple $(a,b,c)\in(K^*)^3$ satisfying $a+b+c=0$ cannot be too large compared with its radical. In the paper under review, the author shows a totally explicit estimate implying that, for every $\varepsilon>0$, we have $$\log H_K(a,b,c)<c (N_K(a,b,c))^{1+\varepsilon},$$ where $c$ is an effectively computable positive constant which depends only on $K$ and on $\varepsilon$. Roughly speaking, he is essentially one logarithm away from establishing the uniform $abc$ conjecture in number fields, as formulated by D. W. Masser [Proc. Amer. Math. Soc. 130 (2002), no. 11, 3141--3150 (electronic); MR1912990 (2003d:11050)].

The theorems are deduced from recent explicit estimates concerning $S$-unit equations obtained by the author and K. Yu [Acta Arith. 123 (2006), no. 1, 9--41; and depend ultimately on the best known lower bounds for linear forms in logarithms of algebraic numbers.

 Профиль  
                  
 
 И как это понимать?
Сообщение06.02.2009, 19:48 


24/05/05
278
МО
juna писал(а):
Вот некоторая информация, но самой статьи не нашел.

По ссылке - текст на китайском (не уверен, встретил лишь один знакомый иероглиф :().

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 6 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: epros


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group