2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Смещение системы координат
Сообщение05.02.2009, 17:55 
Есть стандартная декартова система координат. В ней даны координаты четырех точек. Затем оси, относительно этих точек сместили (повернули или еще что-нить). И даны координаты этих же четырех точек, только уже в новой системе. Как на основании этих данных рассчитать закон изменения координат. Чтобы потом можно было его "обратить" и по конечным (в смещенной СК) координатам вычислить начальные?
Подскажите, пожалуйста, хоть в какую сторону смотреть? Буду очень благодарна!

 
 
 
 
Сообщение05.02.2009, 18:13 
Аватара пользователя
любое движение является аффинным преобразованием:
$$x' = Ax + b$$
причем в случае движения матрица $$A$$ обратима, т. е. обратное движение можно записать так:
$$x = A^{-1}x' - A^{-1}b$$

 
 
 
 
Сообщение05.02.2009, 19:56 
Аватара пользователя
Для однозначного и обратимого решения необходимо и достаточно, чтобы обе четвёрки были вершинами невырожденных тетраэдров. И ещё, разумеется, необходимо указать, какая точка в какую переходит.
Матричное уравнение, которое написал Xaositect, можно перевести в систему из 12 уравнений с 12 неизвестными (у вас трёхмерная система координат, надеюсь).

 
 
 
 
Сообщение06.02.2009, 09:52 
gris, у меня обычная декартова система координат, две оси Х и У.
Xaositect, а Вы не могли бы дать какие-нибудь ссылки на литературу по этому поводу, чтобы я могла поподробнее об этом почитать?

Я так понимаю, что x штрих - это смещенная координата, а для у будет аналогичное уравнение?

 
 
 
 
Сообщение06.02.2009, 10:02 
Если задача плоская, то задача некорректна -- система переопределена: у Вас восемь требований на координаты, в то время как параметров преобразования не более шести (а если оно ортогональное, то лишь три).

В пространстве задача корректна для преобразований общего вида (12 параметров), но некорректна для ортогональных преобразований (6 параметров).

 
 
 
 
Сообщение06.02.2009, 10:04 
Аватара пользователя
А тогда достаточно трёх точек, лишь бы они не лежали на одной прямой. $x$ у Xaositect это вектор, состоящий из двух координат. Можно и так написать:
$\left(\begin{array}{ccc}x'  \\ y' \end{array}\right)=\left(\begin{array}{ccc}a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)\left(\begin{array}{ccc}x  \\ y \end{array}\right)+\left(\begin{array}{ccc}b_1 \\ b_2 \end{array}\right)$

 
 
 
 
Сообщение06.02.2009, 10:23 
ewert, хорошо...А как тогда решение этой задачи будет выглядеть в пространстве для преобразований общего вида?


gris, но ведь эта система не решается, там же 2 уравнения и 6 неизвестных....

 
 
 
 
Сообщение06.02.2009, 10:31 
Аватара пользователя
Так у Вас же три точки. В итоге 6 уравнений :)

Добавлено спустя 3 минуты 46 секунд:

В пространстве
$\left(\begin{array}{ccc}x'  \\ y' \\ z'\end{array}\right)=\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22}& a_{23}\\a_{31} & a_{32}& a_{33} \end{array}\right)\left(\begin{array}{ccc}x  \\ y \\z\end{array}\right)+\left(\begin{array}{ccc}b_1 \\ b_2 \\b_3\end{array}\right)$
Для четырёх точек получим 12 уравнений.

 
 
 
 
Сообщение06.02.2009, 10:49 
gris,
у меня 4 точки...в плоской декартовой системе координат. Т.е. координаты (x1, y1), (x2, y2), (x3, y3), (x4, y4) - это изначальные, ну и четыре смещенные (x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4) ... что-то я видимо туплю...

 
 
 
 
Сообщение06.02.2009, 10:54 
Аватара пользователя
Ну и хорошо. Возьмите три из них, которые не лежат на одной прямой. Вообще тут возможны нюансы.

Добавлено спустя 2 минуты 10 секунд:

Если априорно известно, что существует некоторое движение, которое вот для такого набора точек переводит их вот в этот набор, то мы можем определить матрицу этого движения по трем точкам, не лежащим на одной прямой

 
 
 
 
Сообщение06.02.2009, 10:56 
Найдите решение по любым трём точкам, не лежащим на одной прямой (и на входе, и на выходе). Потом проверьте, правильный ли результат получается для четвёртой точки. Если нет -- задача поставлена некорректно.

 
 
 
 
Сообщение06.02.2009, 10:56 
Аватара пользователя
Если же Вы хотите подобрать преобразование, которое четыре данные точки переводит в четыре других, то у Вас может ничего не получиться. Такого преобразования может не существовать

 
 
 
 
Сообщение06.02.2009, 11:13 
Короче, в постановке задачи явно чего-то напутано. Но если добивать её в том виде, как есть, то тогда так.

Предположим, ни одной "хорошей" тройки найти не удалось. Тогда существует тройка, которая или на входе, или на выходе лежит на одной прямой; предположим для определённости, что на входе. Тогда на выходе она тоже обязана лежать на одной прямой -- иначе решения нет. В этих условиях чётвёртая точка должна лежать на той же прямой и на входе, и на выходе (иначе или решения нет, или существует "хорошая" тройка, но этот случай мы исключили).

Если же все четыре точки лежат на одной прямой, как и их образы, то разрешимость задачи эквивалентна совпадению относительных расстояний между соседними парами точек (имеются в виду, например, расстояния по иксам). Если решение есть, то оно в этой ситуации, разумеется, не единственно (собственно, пространство решений будет двумерным).

 
 
 
 
Сообщение06.02.2009, 11:58 
Xaositect писал(а):
любое движение является аффинным преобразованием:
$$x' = Ax + b$$

Splendid в сообщении #184014 писал(а):
Я так понимаю, что x штрих - это смещенная координата, а для у будет аналогичное уравнение?


$x$ у Xaositectа был вектром, включавшим $x_1,x_2,x_3$, что в быту (да и в других отраслях) называют как $x,y,z$.
Т.е. процитированное есть уже три уравнения, а не одно. То есть одно, матричное. То есть три, по-бытовому.. :)

 
 
 
 
Сообщение06.02.2009, 12:29 
gris, я дико извиняюсь, ну не доходит до меня...
"Если априорно известно, что существует некоторое движение, которое вот для такого набора точек переводит их вот в этот набор, то мы можем определить матрицу этого движения по трем точкам, не лежащим на одной прямой" - как? Как определить эту матрицу?

Добавлено спустя 6 минут 58 секунд:

и еще...почему в приведенных уравнениях не учитывается угол поворота СК?

 
 
 [ Сообщений: 35 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group