2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Обратный скин-эффект в слабо проводящих средах
Сообщение17.09.2024, 08:33 
Заслуженный участник


28/12/12
7930
pppppppo_98 в сообщении #1655051 писал(а):
Есть сомнение что даже в полупроводниках и ионизированных жидкостях (растворах) будет выполняться закон ома

Я бы сказал, нет сомнений, что не будет.

 Профиль  
                  
 
 Re: Обратный скин-эффект в слабо проводящих средах
Сообщение17.09.2024, 08:55 
Аватара пользователя


08/10/09
950
Херсон
pppppppo_98 в сообщении #1655051 писал(а):
reterty в сообщении #1655045 писал(а):
Вот уж, ПОИСТИНЕ ОЛИМПИАДНАЯ ФИЗИЧЕСКАЯ ЗАДАЧА!

Чиво... Вы прежде чем глубоко идущме выводы делать возьмите да подставьте значения реальных параметров... Даже для плохо проводящего титана, частота примерно 10^17 для ваших выводов, что соответствует границе мягкого рентгена, при которой будут отрываться электроны внешних оболочек из-за фотоэффекта. Есть сомнение что даже в полупроводниках и ионизированных жидкостях (растворах) будет выполняться закон ома

Вы бы внимательно мой вышеприведенный график рассмотрели: там приведено значение $\sigma=0.1  \, \rm \Omega^{-1}m^{-1} $-это обычная подсоленная вода. Я же ЧЕТКО УКАЗАЛ В НАЗВАНИИ ТОПИКА: слабо проводящие среды. И еще: у меня к Вам большая просьба-находясь в пределах заведенного мною топика либо пишите грамотно, либо ничего не пишите.

-- Вт сен 17, 2024 09:57:52 --

DimaM в сообщении #1655053 писал(а):
pppppppo_98 в сообщении #1655051 писал(а):
Есть сомнение что даже в полупроводниках и ионизированных жидкостях (растворах) будет выполняться закон ома

Я бы сказал, нет сомнений, что не будет.

Нет сомнений что будет: https://ieeexplore.ieee.org/document/4066170

 Профиль  
                  
 
 Re: Обратный скин-эффект в слабо проводящих средах
Сообщение17.09.2024, 09:10 
Заслуженный участник


28/12/12
7930
reterty в сообщении #1655055 писал(а):
Нет сомнений что будет

Вы невнимательно читатете - речь шла о частотах порядка $10^{17}\;\mbox{c}^{-1}$.

 Профиль  
                  
 
 Re: Обратный скин-эффект в слабо проводящих средах
Сообщение17.09.2024, 09:34 


27/08/16
10195
reterty в сообщении #1655045 писал(а):
Существенное уменьшение импеданса и его составляющих происходит уже на частотах гораздо меньше плазменной (см. рисунок внизу и топик topic158247.html ). И уже в этом диапазоне уравнение (1) можно считать чисто волновым (без второго слагаемого).


reterty
Поздравляю: вы изобрели циллиндрический волновод. Если вы в него нальёте воды, вы снизите добротность и немного подавите резонанс. Если нальёте солёной, сильно подавите. Колебания исчезнут.

Постройте графики модуля одного и того же Бесселя при движении по комплексной плоскости по лучам к центру под разными углами и посмотрите, как там появляются и исчезают колебания в зависимости от фазы луча.

 Профиль  
                  
 
 Re: Обратный скин-эффект в слабо проводящих средах
Сообщение17.09.2024, 09:35 


24/01/09
1228
Украина, Днепр
Хм, а мы так не придём к диэлектрическому волноводу?

Там, если что, максимум поля - по центру.

 Профиль  
                  
 
 Re: Обратный скин-эффект в слабо проводящих средах
Сообщение17.09.2024, 09:39 


27/08/16
10195
Theoristos в сообщении #1655062 писал(а):
Хм, а мы так не придём к диэлектрическому волноводу?
Несомненно. Уравнения Максвелла одни и те же. И ограниченный в нуле Бессель тоже один.

 Профиль  
                  
 
 Re: Обратный скин-эффект в слабо проводящих средах
Сообщение17.09.2024, 10:03 
Аватара пользователя


08/10/09
950
Херсон
И все же: почему в "почти диэлектрическом" волноводе максимум волны по центру?

 Профиль  
                  
 
 Re: Обратный скин-эффект в слабо проводящих средах
Сообщение17.09.2024, 10:07 


27/08/16
10195
reterty в сообщении #1655067 писал(а):
И все же: почему в "почти диэлектрическом" волноводе максимум волны по центру?
А где ему ещё быть? У вашего Бесселя на действительной оси нули сбоку от центра.
Это и используется в циллиндрических волноводах, так как в них на поверхности проводника должен быть нуль поля.

 Профиль  
                  
 
 Re: Обратный скин-эффект в слабо проводящих средах
Сообщение17.09.2024, 10:10 
Аватара пользователя


08/10/09
950
Херсон
realeugene в сообщении #1655071 писал(а):
reterty в сообщении #1655067 писал(а):
И все же: почему в "почти диэлектрическом" волноводе максимум волны по центру?
А где ему ещё быть? У вашего Бесселя на действительной оси нули сбоку от центра.

То, что Бессель осциллирует, я понимаю. Но какова физика (не математика) этого центрального максимума? Почему в одномодовом режиме поле ослабляется именно на периферии-по бокам? Тогда как в скине все наоборот?

 Профиль  
                  
 
 Re: Обратный скин-эффект в слабо проводящих средах
Сообщение17.09.2024, 10:13 


27/08/16
10195
Физика описывается уравнениями Максвелла. Вы хотите разложить их на составные части? Ну постройте разные функции поля в зависимости от радиуса и посмотрите, как они друг с другом связаны.

Или можете начать с мод колебаний круглой упругой пластинки.

-- 17.09.2024, 10:20 --

reterty в сообщении #1655072 писал(а):
Тогда как в скине все наоборот?
При отклонении от действительной оси нули исчезают, и при большом отклонении Бессель переходит в монотонно возрастающую функцию. Похоже, не очень хорошо разбираюсь в специальных функциях, но всё должно быть описано в литературе 200-летней давности.

 Профиль  
                  
 
 Re: Обратный скин-эффект в слабо проводящих средах
Сообщение17.09.2024, 18:02 
Заслуженный участник
Аватара пользователя


04/09/14
5255
ФТИ им. Иоффе СПб
reterty в сообщении #1654652 писал(а):
волновое уравнение для электрического поля $\mathbf{E}$ в системе СИ имеет следующий вид: $$\Delta\mathbf{E}-\mu \mu_0 \sigma \dfrac{\partial \mathbf{E}}{\partial t}-\dfrac{\mu \epsilon}{c^2}\dfrac{\partial^2 \mathbf{E}}{\partial t^2} =0. (1)$$
А граничные условия к этому чуду какие? И не предполагается ли что ток однороден вдоль проводника? В последнем случае проводник должен быть много меньше длины волны, что для оптических частот малопродуктивно.

 Профиль  
                  
 
 Re: Обратный скин-эффект в слабо проводящих средах
Сообщение17.09.2024, 19:32 
Аватара пользователя


08/10/09
950
Херсон
amon в сообщении #1655144 писал(а):
reterty в сообщении #1654652 писал(а):
волновое уравнение для электрического поля $\mathbf{E}$ в системе СИ имеет следующий вид: $$\Delta\mathbf{E}-\mu \mu_0 \sigma \dfrac{\partial \mathbf{E}}{\partial t}-\dfrac{\mu \epsilon}{c^2}\dfrac{\partial^2 \mathbf{E}}{\partial t^2} =0. (1)$$
А граничные условия к этому чуду какие? И не предполагается ли что ток однороден вдоль проводника? В последнем случае проводник должен быть много меньше длины волны, что для оптических частот малопродуктивно.

Вы абсолютно правы: предполагается что проводник имеет столь малую длину, что ток однороден до вплоть гигагерцовых частот (область выше не рассматривается). Гранусловия: на оси поле конечно, а на поверхности (вдоль поверхности) задано.

 Профиль  
                  
 
 Re: Обратный скин-эффект в слабо проводящих средах
Сообщение17.09.2024, 20:37 
Заслуженный участник
Аватара пользователя


04/09/14
5255
ФТИ им. Иоффе СПб
reterty в сообщении #1655157 писал(а):
Вы абсолютно правы: предполагается что проводник имеет столь малую длину, что ток однороден до вплоть гигагерцовых частот
На гигагерцах длина волны порядка $0.1$ метра. Значит образец должен быть существенно меньше. С другой стороны, если считать $\sigma\sim 0.1,$ получится $\delta_0=\sqrt{2/(\mu \mu_0 \sigma \omega)}\sim 0.1$ метра. То есть, образец должен быть много меньше толщины скин-слоя, и вся эта наука отправляется в тар-тарары.

 Профиль  
                  
 
 Re: Обратный скин-эффект в слабо проводящих средах
Сообщение17.09.2024, 20:47 
Аватара пользователя


08/10/09
950
Херсон
amon в сообщении #1655170 писал(а):
reterty в сообщении #1655157 писал(а):
Вы абсолютно правы: предполагается что проводник имеет столь малую длину, что ток однороден до вплоть гигагерцовых частот
На гигагерцах длина волны порядка $0.1$ метра. Значит образец должен быть существенно меньше. С другой стороны, если считать $\sigma\sim 0.1,$ получится $\delta_0=\sqrt{2/(\mu \mu_0 \sigma \omega)}\sim 0.1$ метра. То есть, образец должен быть много меньше толщины скин-слоя, и вся эта наука отправляется в тар-тарары.

thin semiconducting films Вас устроят? Или более обще: все образцы с продольным размером менее сантиметра. Уточню: у меня в расчетах $\omega_{\rm max} =5\cdot 10^8 \rm s^{-1} $. Это чтобы еще частотная зависимость диэлектрической проницаемости не проявлялась. Значит, $f_{\rm max} \approx 10^8 \rm Hz$

 Профиль  
                  
 
 Re: Обратный скин-эффект в слабо проводящих средах
Сообщение17.09.2024, 21:01 
Заслуженный участник
Аватара пользователя


04/09/14
5255
ФТИ им. Иоффе СПб
reterty в сообщении #1655174 писал(а):
все образцы с продольным размером менее сантиметра.
Не устроят. Чтобы эта наука работала все размеры - и продольные и поперечные должны быть много меньше длины волны на частоте передачи. Иначе волновод получается, а там совсем другая наука.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 38 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: talash


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group