В книжке Виро и ко приводится следующий пример топологии на множестве натуральных чисел:
Цитата:
Рассмотрим следующее свойство подмножества
множества натуральных чисел
: существует такое
, что
не содержит арифметической прогрессии длиной больше
. Докажите, что набор, состоящий из таких подмножеств и всего множества N, образует совокупность замкнутых множеств некоторой топологии в
.
Или, равносильно, открытые множества этой топологии представляют собой подмножества
содержащие сколь угодно длинные арифметические прогрессии. В частности, множества, содержащие бесконечные арифметические прогрессии, являются открытыми в этой топологии. Кроме того, пользуясь
теоремой Семереди, можно строить подмножества
, содержащие сколь угодно длинные конечные арифметические прогрессии, но не содержащие бесконечной арифметической прогрессии. Значит, эта топология строго сильнее
топологии Голомба, база которой состоит из множеств, содержащих беск арифм прогрессии.
В статье Вики утверждается, что
составляет хаусдорфово пространство относительно топологии Голомба. Значит, топология из примера также является хаусдорфовой. Мне интересны дальнейшие свойства топологии из примера. Например,
регулярна ли она? То есть, для произвольного замкнутого множества и точки, лежащей вне его, всегда ли мы можем найти непересекающиеся окрестности замкнутого множества и точки? И является ли исходная топология связной в том или ином смысле?