2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Найти наименьшее значение функции
Сообщение27.03.2024, 10:30 


28/12/05
160
Найдите наименьшее значение функции $f(x)=\sqrt{x^2 - 10 x + 45} + \sqrt{x^2 - 2 \sqrt{5} x + 11} + \sqrt{
 x^2 - 2 x + 5}$.

 Профиль  
                  
 
 Re: Найти наименьшее значение функции
Сообщение27.03.2024, 11:07 
Заслуженный участник
Аватара пользователя


01/08/06
3149
Уфа
$f(x)=A(x)+B(x)+C(x)$.
Сравнительно несложными методами математического анализа устанавливаем, что $A(x)+C(x)$ имеет единственный минимум в точке $\sqrt{5}$.
$B(x)$ также имеет единственный минимум в точке $\sqrt{5}$.
Но ответ не очень красивый получается.

 Профиль  
                  
 
 Re: Найти наименьшее значение функции
Сообщение27.03.2024, 11:51 


28/12/05
160
worm2 в сообщении #1634378 писал(а):
$f(x)=A(x)+B(x)+C(x)$.
Сравнительно несложными методами математического анализа устанавливаем, что $A(x)+C(x)$ имеет единственный минимум в точке $\sqrt{5}$.
$B(x)$ также имеет единственный минимум в точке $\sqrt{5}$.
Но ответ не очень красивый получается.

Да я тоже с помощью матанализа получил $\sqrt{5}$. Но решение получился громоздким. Подумал может быть еще более простое решение есть?

 Профиль  
                  
 
 Re: Найти наименьшее значение функции
Сообщение27.03.2024, 12:49 
Заслуженный участник
Аватара пользователя


23/08/07
5501
Нов-ск
student в сообщении #1634384 писал(а):
Подумал может быть еще более простое решение есть?
Без матанализа решал. Здесь суммируются длины трёх отрезков (нижние концы на оси абсцисс фиксированы, а верхние имеют переменную координату $x$). При $x=\sqrt{5}$ один отрезок вертикальный, а два других имеют наклон разного знака.

 Профиль  
                  
 
 Re: Найти наименьшее значение функции
Сообщение29.03.2024, 08:50 
Заслуженный участник
Аватара пользователя


26/02/14
600
so dna
student в сообщении #1634375 писал(а):
Найдите наименьшее значение функции $f(x)=\sqrt{x^2 - 10 x + 45} + \sqrt{x^2 - 2 \sqrt{5} x + 11} + \sqrt{x^2 - 2 x + 5}$.


$f(x)=\sqrt{\left(5-x\right)^2+\left(2\sqrt{5}\right)^2}+\sqrt{\left(x-1\right)^2+2^2} + \sqrt{\left(x-\sqrt{5}\right)^2 + 6}\geq$

$\geq \sqrt{\left(5-x+x-1\right)^2+\left(2\sqrt{5}+2\right)^2} + \sqrt{\left(x-\sqrt{5}\right)^2 + 6}\geq 2\sqrt{10 + 2\sqrt{5}} + \sqrt{6}$

Здесь мы воспользовались неравенством Минковского:

Для $a_i,b_i\geq0,~p\geq1,~\Bigl(\sum{a_i^p}\Bigr)^\frac{1}{p}+\Bigl(\sum{b_i^p}\Bigr)^\frac{1}{p}\geq \Bigl(\sum{\left(a_i+b_i\right)^p}\Bigr)^\frac{1}{p}$

 Профиль  
                  
 
 Re: Найти наименьшее значение функции
Сообщение04.04.2024, 13:31 
Аватара пользователя


04/03/21
34
Понравилась геометрическая трактовка - сделал визуализацию:
Изображение

Минимум когда сиреневый отрезок вертикален
Изображение

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 6 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Shadow


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group