Доброго всем времени суток. Уважаемые, помогите разобраться.
Задача: Из десяти стран четыре подписали договор о дружбе ровно с пятью другими странами, а каждая из оставшихся шести — ровно с тремя. Сколько всего было подписано договоров?
Авторское решение (дословно): Четыре страны поставили
подписей. А оставшиеся шесть стран поставили
подписей. Ясно, что договоров в два раза меньше, чем общее количество подписей, то есть всего было подписано
договоров.
Примечание автора:
Неискушенный читатель может предложить неправильное решение: 4 страны подписали договор с 5-ю странами, всего 20 договоров; 6 стран с ещё 3-мя странами — ещё 18 договоров. Итого 38 договоров. Ошибка в данном рассуждении состоит в следующем: наборы
и
зависимы: «3 страны» из второго набора это какие-то из стран, уже учтенных в первом наборе. Отметим также, что при некоторых числовых данных условие задачи невыполнимо.
Похоже, я не понимаю условия (и авторского решения). Из решения следует, что 4 страны (каждая) поставили
подписей с пятью другими, т.е. заключили 20 договоров. Если на этом остановиться, то заключено 20 договоров.
Если подсчитать количество подписей, которые поставили оставшиеся 6 стран с 3-мя другими, то среди них, ввиду вовлечения всего набора стран в договорную деятельность, найдутся такие, с которыми уже заключены договоры с первой четверкой. Здесь непонятно:
1. среди оставшихся шести стран присутствуют те пять, с которыми заключены договоры с первой четверкой, т.е. из этих 6-ти стран, заключивших договоры, должно быть никак не меньше 5-ти, заключивших договоры с первой четверкой, т.е. 4, но не 3.
2.если 20 договоров уже есть, почему после окончательного расчета их оказалось 19?
Или условие нужно декодировать по другому?