2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Задача по Винбергу гл.9 задача 7
Сообщение28.02.2024, 13:06 
Аватара пользователя


23/05/20
419
Беларусь
Уважаемые коллеги!. Вопрос по задаче Винберг гл.9, параграф 1, задача 7.
Найти прообразы элементов $[1]_3 \in Z_3$ и $[1]_5 \in Z_5$ при изоморфизме переводящем $[1]_{15}$ в $([1]_3,[1]_5)$.

Сама задача решается легко. Взял следующее отображение: $z_{15}=10\cdot z_3 + 6\cdot z_5$
Получил следующую таблицу элементов:
$(0,0)=0$; $(1,0)=10$; $(2,0)=5$;
$(0,1)=6$; $(1,1)=1$; $(2,1)=11$;
$(0,2)=12$; $(1,2)=7$; $(2,2)=2$;
$(0,3)=3$; $(1,3)=13$; $(2,3)=8$;
$(0,4)=9$; $(1,4)=4$; $(2,4)=14$;

Хотел бы найти обратное отображение: $z_{15} \mapsto (m,n)$, но со вторым столбцом ничего не получается. Если для $m$ формула выводится легко: $m=z_{15} \bmod 3$,
то для $n$ - формулы не вижу.
Может у кого-то есть идеи для подсказки?

 Профиль  
                  
 
 Re: Задача по Винбергу гл.9 задача 7
Сообщение28.02.2024, 13:52 
Аватара пользователя


07/01/16
1654
Аязьма
StepV в сообщении #1631219 писал(а):
то для $n$ - формулы не вижу.
Может у кого-то есть идеи для подсказки?
Формула точно такой же структуры подойдет

 Профиль  
                  
 
 Re: Задача по Винбергу гл.9 задача 7
Сообщение28.02.2024, 15:55 
Аватара пользователя


23/05/20
419
Беларусь
waxtep в сообщении #1631226 писал(а):
Формула точно такой же структуры подойдет


Да, посмотрел, вы правы: $n=z_{15} \mod 5$
Думал зависимость сложнее и не стал рассматривать этот вариант.
Спасибо за помощь.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Alex Krylov


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group