У меня вопрос. Вам это, регрессионный анализ и смещённые оценки применительно к нему действительно нужно
Оценивание параметров мне интересно, да, хоть это для меня только изредка используемый инструмент. Я был уверен, что смещённые оценки хуже несмещённых. Но вы написали, что я не прав. Дав ссылку на свою работу. Заглянув в неё я обнаружил, что читать её тяжеловато, но у меня сложилось впечатление, что вы решаете несколько иную задачу, а не задачу оценивания полностью неизвестных неслучайных параметров, неявно введя в пространстве параметров какие-то дополнительные априорные понятия о том, что такое хорошо и что такое плохо. Это априорное знание и делает вашу смещённую оценку предпочтительнее несмещённой. Эту свою гипотезу я и попытался проверить.
-- 20.11.2023, 15:18 --Вопрос - хоть про какой-нибудь вывод о средних из этих тестов.
Как известно, средняя взаимная информация не отрицательная, так что,
какой-то вывод сделать, конечно, можно. Из предполагаемой симметрии задачи можно сделать вывод, что скорее всего если для
тест проходит, а для
не проходит, то
. Но насколько вероятность этого больше
- вопрос хороший.
-- 20.11.2023, 15:30 --Но если наскребу, считаете, что это может помочь?
Ещё раз: я до конца не понимаю, какую задачу вы решаете. Но обычно, чем больше данных - тем больше информации для обоснованного выбора и тем меньше апостериорная вероятность ошибки. Предельные теоремы работают.
Если же вы перебираете разные гипотезы на одних и тех же данных, то вы попадаете в ловушку переобучения. Рано или поздно вы найдёте гипотезу, идеально соответствующую вашим выборкам, конечно. Эти выборки у вас уже грязные.
-- 20.11.2023, 15:35 -- Требуется только, чтобы разности были распределены нормально. Нормальность самих выборок при обосновании этого варианта критерия Стьюдента нигде не используется.
Для разностей - да, конечно, достаточно, чтобы они были нормальными. Но вы должны это знать априорно, а не из данных.
-- 20.11.2023, 15:39 --Выборки зависимые, они получается из одних и тех же данных, это и в названии темы указано.
В случае зависимых выборок оценка дисперсии в знаменателе теста Стьюдента съезжает.
-- 20.11.2023, 15:57 --Определение - это не утверждение, с ним не надо спорить. Это просто определение понятия.
Плохое определение вводит в заблуждение похожестью на совершенно не связанные вещи. Но я оспаривал не то, что это некая вероятность ошибки вообще, а то, что это вероятность
вашей ошибки. Это априорная вероятность ошибки в рамках гипотезы, а не апостериорная вероятность вашей ошибки после сделанного вами выбора. Разница может быть существенной, когда вы эту вероятность 0.05 интуитивно начинаете воспринимать как второе. Сначала эти 0.05 превращаются в 0.1 в "типичных" условиях, потом нужно накинуть ещё двоечку чтобы учесть погрешности применения вами теста Стюдента в условиях, на которые он не рассчитан, и в результате ваш риск, что вы всё-таки ошиблись, оказывается, например,
. Вам самому решать, насколько это приемлемо.