Добрый день, уважаемые участники форума! Я наткнулся на следующую задачу:
Существует ли такая постоянная C, что для любой непрерывно дифференцируемой на прямой действительной функции f, имеющей вторую производную, определенную всюду, кроме, может быть, конечного числа точек, условия
для всех
и
во всех точках существования f''(x) влекут неравенство
для всех
?
Я пока что дошёл до того, что если заменить условие, что вторая производная может быть не определена в конечном числе на то, что вторая производная определена почти всюду, то можно привести контр-пример (это более-менее очевидно). Для исходной задачи контр-примера не нашёл, поэтому склоняюсь к тому, что условие задачи выполняется. Буду благодарен, если кто-нибудь подбросит идейку относительно дальнейшего решения.