2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Предел (n!/n^n)^(1/n)
Сообщение31.10.2023, 07:27 


14/02/20
872
Это Кудрявцев 1 том, 8 параграф, 252 (1)

Найти:
$\lim\limits_{n\to+\infty}\frac{\sqrt[n]{n!}}{n}$

Можно применить теорему Штольца после логарифмирования:
$\lim\frac{\ln\frac{n!}{n^n}}n=\lim\left(\ln\frac{(n+1)!}{(n+1)^{n+1}}-\ln\frac{n!}{n^n}\right)=\lim\ln\left(\frac{n}{n+1}\right)^n=\ln\frac 1e=-1$, и в итоге предел будет $\frac 1e$ (такой же результат получится, если применить формулу Стирлинга). Но в этом решении есть как минимум две проблемы:
1) мы к этому моменту строго говоря еще не знаем про непрерывность логарифма и экспоненты, а логарифмируя и потенцируя, мы по сути пользуемся их непрерывностью;
2) мы еще не знаем теорему Штольца! в Кудрявцеве следующая задача - доказать эту теорему (253), что как бы жирно намекает, что ее использовать в задаче 252 нехорошо...

Подскажите, что можно сделать?

 Профиль  
                  
 
 Re: Предел (n!/n^n)^(1/n)
Сообщение31.10.2023, 07:53 
Заслуженный участник


12/08/10
1718
Предел средних геометрических.

 Профиль  
                  
 
 Re: Предел (n!/n^n)^(1/n)
Сообщение31.10.2023, 10:48 
Заслуженный участник


13/12/05
4673
Обозначим $x_n=\frac{n! }{n^n}$. Из того, что $\frac{x_{n+1}}{x_n}=\frac{1}{e}$ следует, что для любого $\varepsilon>0$ выполнено $\left(\frac{1}{e}-\varepsilon\right)^n<x_n<\left(\frac{1}{e}+\varepsilon\right)^n$ при $n>N(\varepsilon)$. Извлечем корень степени $n$ .

 Профиль  
                  
 
 Re: Предел (n!/n^n)^(1/n)
Сообщение31.10.2023, 11:28 


14/02/20
872
Padawan в сообщении #1615391 писал(а):
Обозначим $x_n=\frac{n! }{n^n}$. Из того, что $\frac{x_{n+1}}{x_n}=\frac{1}{e}$ следует, что для любого $\varepsilon>0$ выполнено $\left(\frac{1}{e}-\varepsilon\right)^n<x_n<\left(\frac{1}{e}+\varepsilon\right)^n$ при $n>N(\varepsilon)$. Извлечем корень степени $n$ .

В целом вполне гениально и вообще отсюда получается, что если $\frac{x_{n+1}}{x_n}\to A>0$, то $\sqrt[n]{x_n}\to A$, если я правильно все понял. Но только все же не совсем так сильно, как вы описали, кажется.
Если $\frac{x_{n+1}}{x_n}\to A$, то $\left(A-\varepsilon\right)x_n<x_{n+1}<\left(A+\varepsilon\right)x_n$, начиная с некоторого номера $N$, а значит $\left(A-\varepsilon\right)^{n-N}x_N<x_{n}<\left(A+\varepsilon\right)^{n-N}x_N$. Вот теперь если взять корень n-ной степени с обоих сторон и рассмотреть предел, то получится нужное выражение. Так ведь?

-- 31.10.2023, 11:43 --

слушайте, а не это ли давно потерянное доказательство того, что в случае рядов признак Коши сильнее признака Даламбера?

 Профиль  
                  
 
 Re: Предел (n!/n^n)^(1/n)
Сообщение31.10.2023, 14:03 
Заслуженный участник


13/12/05
4673
Я еще один промежуточный шаг сделал: пусть $y_n=\frac{x_n}{(1/e+\varepsilon) ^n}$. Тогда $\lim\frac{y_{n+1}}{y_n}<1$, а значит, $\lim y_n=0$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 5 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Alex Krylov


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group