2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Задача про движение по окружности.
Сообщение11.10.2023, 11:11 


11/10/23
4
Точка начинает равно ускоренно двигаться по окружности радиуса R . Какой
путь она пройдет на момент, когда ее полное ускорение будет составлять угол 45 с направлением движения?

 Профиль  
                  
 
 Re: Задача про движение по окружности.
Сообщение11.10.2023, 11:21 
Заслуженный участник
Аватара пользователя


15/10/08
12726
Juhimich в сообщении #1613224 писал(а):
равноускоренно двигаться по окружности
Эту фразу можно понять двумя различными способами.

 Профиль  
                  
 
 Re: Задача про движение по окружности.
Сообщение11.10.2023, 11:27 


11/10/23
4
Утундрий
Думаю тут имеется в веду, что тангенциальное ускорение постоянно по модулю и направлению.

 Профиль  
                  
 
 Re: Задача про движение по окружности.
Сообщение11.10.2023, 11:42 
Заслуженный участник


12/08/10
1694
Juhimich в сообщении #1613226 писал(а):
тангенциальное ускорение постоянно по модулю и направлению
Мистика какая-то.

 Профиль  
                  
 
 Re: Задача про движение по окружности.
Сообщение11.10.2023, 11:59 
Заслуженный участник
Аватара пользователя


18/09/14
5207
Juhimich в сообщении #1613224 писал(а):
Точка начинает равно ускоренно двигаться по окружности радиуса R

Возможно, в условии сказано: с постоянным угловым ускорением?
(Имейте в виду: это вовсе не равноускоренное движение).

 Профиль  
                  
 
 Re: Задача про движение по окружности.
Сообщение11.10.2023, 12:03 
Аватара пользователя


01/11/14
1993
Principality of Galilee
Juhimich в сообщении #1613224 писал(а):
Точка начинает равно ускоренно двигаться по окружности
Juhimich в сообщении #1613226 писал(а):
тангенциальное ускорение постоянно по модулю и направлению
Как это совместить??
Juhimich в сообщении #1613226 писал(а):
тут имеется в веду
В оффтоп заключать не буду. Правильно: в виду.

 Профиль  
                  
 
 Re: Задача про движение по окружности.
Сообщение11.10.2023, 12:15 
Заслуженный участник


23/05/19
1254
Juhimich в сообщении #1613226 писал(а):
Думаю тут имеется в веду, что тангенциальное ускорение постоянно по модулю и направлению.

Скорее, просто по модулю.

-- 11.10.2023, 11:15 --

Juhimich в сообщении #1613226 писал(а):
Думаю тут имеется в веду, что тангенциальное ускорение постоянно по модулю и направлению.

Скорее, просто по модулю.

 Профиль  
                  
 
 Re: Задача про движение по окружности.
Сообщение11.10.2023, 12:16 


11/10/23
4
Mihr в сообщении #1613230 писал(а):
Juhimich в сообщении #1613224 писал(а):
Точка начинает равно ускоренно двигаться по окружности радиуса R

Возможно, в условии сказано: с постоянным угловым ускорением?
(Имейте в виду: это вовсе не равноускоренное движение).

Условие описал точно. И еще в заметках сказано, что ответ должен выйти R/2.

 Профиль  
                  
 
 Re: Задача про движение по окружности.
Сообщение11.10.2023, 12:30 
Заслуженный участник


12/08/10
1694
Mihr в сообщении #1613230 писал(а):
с постоянным угловым ускорением?
Juhimich в сообщении #1613235 писал(а):
ответ должен выйти R/2.
Вот так и выходит.

 Профиль  
                  
 
 Re: Задача про движение по окружности.
Сообщение11.10.2023, 12:36 
Заслуженный участник
Аватара пользователя


18/09/14
5207
Juhimich в сообщении #1613235 писал(а):
Условие описал точно.

Значит, условие сформулировано, мягко говоря, очень неаккуратно.
Juhimich в сообщении #1613235 писал(а):
И еще в заметках сказано, что ответ должен выйти R/2.

Судя по приводимому Вами ответу, вероятнее всего, в задаче подразумевается именно то, что я и написал: движение по окружности с постоянным угловым ускорением. Но это движение вовсе не является равноускоренным (в общепринятом смысле слова).

 Профиль  
                  
 
 Re: Задача про движение по окружности.
Сообщение11.10.2023, 13:04 
Аватара пользователя


27/02/12
4028
Juhimich
Теперь, когда консенсус в понимании условия достигнут, и даже известен правильный ответ, нужно задуматься:
какое соотношение между нормальным и касательным ускорениями следует из этого требования:
Juhimich в сообщении #1613224 писал(а):
полное ускорение будет составлять угол 45 с направлением движения

Скажу Вам по секрету: это соотношение максимально простое. Максимально! :-)

 Профиль  
                  
 
 Re: Задача про движение по окружности.
Сообщение11.10.2023, 13:40 
Админ форума


02/02/19
2729
 i  Juhimich
Даже отдельные обозначения нужно оформлять как формулы. Не R/2, а $ R/2$, а еще лучше $\frac  R 2$. На первый раз не понесу тему в Карантин, в следующий раз - обязательно.

 Профиль  
                  
 
 Re: Задача про движение по окружности.
Сообщение11.10.2023, 15:17 


11/10/23
4
miflin в сообщении #1613240 писал(а):
Juhimich
Теперь, когда консенсус в понимании условия достигнут, и даже известен правильный ответ, нужно задуматься:
какое соотношение между нормальным и касательным ускорениями следует из этого требования:
Juhimich в сообщении #1613224 писал(а):
полное ускорение будет составлять угол 45 с направлением движения

Скажу Вам по секрету: это соотношение максимально простое. Максимально! :-)

Ну соотношение будет равно 1.

 Профиль  
                  
 
 Re: Задача про движение по окружности.
Сообщение11.10.2023, 16:30 
Аватара пользователя


11/12/16
14255
уездный город Н
Juhimich в сообщении #1613251 писал(а):
Ну соотношение будет равно 1.

ну и?

 Профиль  
                  
 
 Re: Задача про движение по окружности.
Сообщение11.10.2023, 16:47 
Аватара пользователя


27/02/12
4028
Juhimich в сообщении #1613251 писал(а):
Ну соотношение будет равно 1.

Теперь напишите выражения для: длины дуги $l(\varepsilon, t,R)$, нормального $a_n(\varepsilon, t,R)$ и тангенциального $a_{\tau}(\varepsilon, R)$ ускорений.
А далее комбинируйте эти уравнения.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 15 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: DimaM


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group