2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Доказательство для n=3.
Сообщение30.09.2023, 21:46 
Аватара пользователя
По мат.форумам уже давно гуляет следующее доказательство ВТФ.

Рассмотрим уравнение $x^n + y^n = z^n$ для случая $n=3.$
$x^3 + y^3 = z^3.$

Запишем $z$ как $z = (y + b),$ тогда:

$x^3 + y^3 = (y + b)^3$

$x^3 = (y + b)^3 - y^3$

$x^3 = 3y^{2}b + 3yb^{2} + b^3$

$x^3 = b(3y^{2} + 3yb + b^2)$

Мы получили: $x^3 = b \cdot w,$ где $w$ - некое натуральное число.
Такое разбиение возможно только если $x$ - составное число и включает в себя $b.$
Т.е. $x = kb,$ где $k$ - некое натуральное число. Тогда:

$x^3 = k^3 b^3$

$k^3 b^3 = b(3y^{2} + 3yb + b^2)$

$k^3 b^2 = 3y^{2} + 3yb + b^2$

$k^3 = \dfrac {3y^{2}}{b^2} + \dfrac {3y}{b} + 1$

Рассмотрим случай, когда $x$ и $y$ взаимно простые.
Тогда $y$ не делится на $b$. Тогда уравнение $(\dfrac {3y^{2}}{b^2} + \dfrac {3y}{b})$ не имеет целочисленного решения.

Тогда рассмотрим обратный случай, когда числа $x$ и $y$ не взаимно простые, и имеют общий делитель.
Тогда $y=s \cdot b,$ где $s$ - некое натуральное число, уравнение примет вид:

$k^3 = \dfrac {3y^{2}}{b^2} + \dfrac {3y}{b} + 1$

$k^3 = 3s^2 + 3s + 1$

Подытожим. Мы получили:

$x = kb$

$y = sb$

$z = y+b$

$z = sb+b = b(s+1)$

Подставим эти значения в исходное уравнение:

$x^3 + y^3 = z^3$

$k^3 b^3 + s^3 b^3 = b^3 (s+1)^3$

$k^3 + s^3 = (s+1)^3$

$s^3 + k^3 = (s+1)^3$

Очевидно, что это уравнение не имеет решения в целых числах.
Что и требовалось доказать.
-----
Вот такое решение гуляет в интернете. Причем достаточно долго.
Я так понимаю, что где-то ошибка?

 
 
 
 Re: Доказательство для n=3.
Сообщение30.09.2023, 21:56 
Аватара пользователя
Martynov_M в сообщении #1611867 писал(а):
Такое разбиение возможно только если $x$ - составное число и включает в себя $b.$
Что такое "включает в себя"? $x$ делится на $b$? Тогда это неправда, например $2^3 = 4 \cdot 2$, но $2$ не делится на $4$.

 
 
 
 Re: Доказательство для n=3.
Сообщение30.09.2023, 22:36 
Аватара пользователя
mihaild в сообщении #1611868 писал(а):
Что такое "включает в себя"? $x$ делится на $b$?

$x$ делится на $b$.

mihaild в сообщении #1611868 писал(а):
Тогда это неправда, например $2^3 = 4 \cdot 2$, но $2$ не делится на $4$.

$2^3 = 2 \cdot 2 \cdot 2$

$2$ делится на $2.$

-- 30.09.2023, 22:46 --

Martynov_M в сообщении #1611867 писал(а):
Такое разбиение возможно только если $x$ - составное число и включает в себя $b.$

Да, вы правы. Это высказывание не является корректным.
Число $x$ может быть простым, и тогда $x^3 = b^3.$

Но тогда:

$x^3 = b \cdot ( \ldots + b^2) = b^3 + (\ldots)$

получили противоречие:

$x^3 = b^3$

$x^3 > b^3$

 
 
 
 Re: Доказательство для n=3.
Сообщение30.09.2023, 23:00 
Аватара пользователя
Martynov_M в сообщении #1611867 писал(а):
Такое разбиение возможно только если $x$ - составное число и включает в себя $b.$
Т.е. $x = kb,$ где $k$ - некое натуральное число.


A eще и $w$. Рассмотрим подробней. Пусть $x$- составное число, для простоты, являющееся произведением трех простых чисел: $x=p_1\cdot p_2\cdot p_3$
Тогда имеем следующие варианты для вашей формулы: $x^3=b \cdot w={p_1}^3 \cdot (p_2 \cdot p_3)^3=(p_1\cdot p_2)^3 \cdot {p_3}^3$...
Т.е. $b$ и $w$- кубы.

 
 
 
 Re: Доказательство для n=3.
Сообщение30.09.2023, 23:06 
Аватара пользователя
StepV в сообщении #1611881 писал(а):
Т.е. $b$ и $w$- кубы.

Это же откуда?

 
 
 
 Re: Доказательство для n=3.
Сообщение30.09.2023, 23:07 
Аватара пользователя
Martynov_M в сообщении #1611867 писал(а):
Мы получили: $x^3 = b \cdot w,$ где $w$ - некое натуральное число.
Такое разбиение возможно только если $x$ - составное число и включает в себя $b.$
Вот это неправда. Контрпример выше: $x = 2$, $b = 4$, $w = 2$.

 
 
 
 Re: Доказательство для n=3.
Сообщение30.09.2023, 23:19 
Аватара пользователя
Geen в сообщении #1611882 писал(а):
Это же откуда?


Спасибо. Подумал, действительно не прав. Могут быть еще варианты (в соответствии с моим предыдущим примером):
$x^3=b\cdot w=p_1 \cdot ({p_1}^2 \cdot (p_2 \cdot p_3)^3)$...
Т.е. действительно, могут кубами и не быть.

 
 
 
 Re: Доказательство для n=3.
Сообщение01.10.2023, 07:19 
Martynov_M, не годится. Приведенные Вами рассуждения имеют смысл и по модулю 4, но, к примеру. $2^3+1^3 \equiv 5^3 \pmod 4.$ Тогда $x = 2, y = 1, z = 5, b = 4$ но $x \not\equiv kb,$ поскольку $kb$ делится нацело на 4, а $x -$ не делится. Надо отметить, что с кубом такой проблемы нет: $x^3 \equiv b w,$ так как обе части нацело делятся на 4.

-- 01.10.2023, 07:38 --

Martynov_M в сообщении #1611867 писал(а):
Тогда рассмотрим обратный случай, когда числа $x$ и $y$ не взаимно простые, и имеют общий делитель.

Этого можно не делать; если $x$ и $y$ имеют общий делитель, то это также и делитель $z,$ и можно сократить уравнение на этот делитель. Таким образом, достаточно рассмотреть случай, когда $x$ и $y$ взаимно-простые.

 
 
 
 Re: Доказательство для n=3.
Сообщение01.10.2023, 16:22 
Возможно, Martynov, natalya
правы и приводимые ими доказательства приемлемы. Но скажите - зачем пытаться почесать правой ногой левое ухо? Имею в виду, что есть более простые доказательства. Одно из них привожу ниже, именно для третьей степени.
Начало соответствует названным ТС, а именно:
Полагаю, что равенство $x^3 + y^3 = z^3$ для целых чисел существует и z = y + b. Конечно,
$x^3 = z^3 - y^3 = 3y^2b + 3yb^2 + b^3$
Дальше пути расходятся. Я продолжаю так: переношу $x^3$ в правую часть и получаю квадратное относительно "y" уравнение вида
$3y^2b + 3yb^2 + b^3 - x^3 = 0$
Решаем его относительно "y" и получаем (уж позвольте опустить элементарные выкладки типа отнять/прибавить и разделить/умножить)
y = - 0,5b + $\sqrt{ (- 0,0833...3...) b^2 + (0,333...3...) x^3/b}$
Под корнем имеем 3 в периоде, т.е. извлечь корень невозможно. Следовательно, "y" не может быть целым числом, о чём и говорил старик Ферма.
Какие ещё мудрые доказательства нужны?

 
 
 
 Re: Доказательство для n=3.
Сообщение01.10.2023, 18:12 
Аватара пользователя
ivanovbp в сообщении #1611940 писал(а):
Под корнем имеем 3 в периоде, т.е. извлечь корень невозможно.

Докажите.
ivanovbp в сообщении #1611940 писал(а):
Какие ещё мудрые доказательства нужны?

Было бы неплохо, для начала, правильно формулы писать.

 
 
 
 Re: Доказательство для n=3.
Сообщение01.10.2023, 19:05 
 !  ivanovbp
Бан на месяц за попытку захвата темы и возобновление темы из пургатория.

 
 
 [ Сообщений: 11 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group