В школьном курсе противопоказана излишняя формализация. Потому достаточно интуитивного понимания, о чем идет речь.
Интуитивное понимание - прекрасная вещь, когда понимающий способен её хоть немножко разложить на составляющие, установить связи с прочими интуитивными понятиями и т.д.
Поэтому школьникам, наверное, стоит рассказывать всяческие нестрогие вещи, позволяющие хоть как-то "осмотреть" вводимые термины. Для внутренней/внешней области замкнутой кривой или ломаной подошло бы такое описание, например: берём точку, не лежащую на этой ломаной, и пытаемся найти траекторию, которая вывела бы эту точку на бесконечность, не пересекая ломаную. Есть такая траектория - значит, точка из внешней области. Заодно можно рассказать, что на глобусе вопрос теряет смысл и напомнить анекдот о том, как математик ловит льва в клетку. Всё будет доступно даже третьеклашке.