Уважаемые эксперты.
Получил выражение для гравиполя куба вдоль линии соединяющей центр масс куба и проходящей через середину ребра, для оценки этого выражения на бесконечном удалении.
Выражение получилось достаточно емкое и при численной проверке получается противоречие: видимо где-то присутствует ошибка. Много раз проверял и "патологически" не могу ее найти.
Ниже я подробно изложу материал, для того чтобы если кто-то будет помогать, просто пробежал "свежим" взглядом по выкладкам и обнаружил ошибку.
Так как объем аналитики содержит более 20 тыс. знаков, то материал придется излагать фрагментарно.
Заранее благодарен.
Куб, с ребром
, равномерной плотности
, расположен в системе координат так, что центр масс куба совпадает с началом координат, ось
проходит через середину ребра, диагональная плоскость куба совпадает с плоскостью
.
котрольная точка на оси
. Гравиполе будем находить вдоль оси
за пределами пространства куба.
В данных условиях поле куба, без гравитационной постоянной будет иметь выражение:
Производная по z от выражения:
суть подынтегральное выражение. Следовательно интеграл по z, будет иметь вид:
это равно:
это равно:
Интегрируем по у эти два слагаемые(согласно Двайт 200.01
где:
для первого слагаемого и
для второго слагаемого.)
получим:
Подставим пределы интегрирования :
, получим:
Остается интегрирование по переменной х. Так как при больших значениях
выражение под логарифмом больше нуля, то модули можно заменить на круглые скобки.
Введем обозначения
В таких обозначениях выражение поля будет иметь вид: