Вот такой ряд нужно исследовать на равномерную сходимость на множестве
:
Конечно, можно сказать, что часть его - это известный ряд, и в итоге мы понимаем, что ряд сходится к тождественной единице, но сходится неравномерно, потому что вдалеке на бесконечности каждая из частичных сумм будет стремиться к нулю, а значит достаточно далеко от единицы.
Но все же хотелось бы (и наверное предполагается), что мы докажем не-равномерную сходимость этого ряда какими-то конвенциональными способами, с помощью критерия Коши или чего-то в этом роде...
Я вроде бы доказал по критерию Коши, но получается очень муторно, кажется. Опять же, тут может возникнуть где-то желание воспользоваться формулой Стирлинга, но я лично пока не умею ее доказывать и чувствую, что использовать ее не могу.
Мое докво:
Критерий Коши
Достаточно доказать, что правая часть не сколь угодно мала при сколь угодно далеких
. Вот тут бы пригодилась формула Стирлинга, но не комильфо. Вместо этого я рассматриваю
, и доказываю, что в пределе будет больше
(а-ля "признак Даламбера", только тут не ряд, а последовательность; на самом деле даже стремится к бесконечности). А это значит, что следующий член будет намного больше предыдущего, ну и к нулю, конечно, не стремятся.
Вот это последнее действие мне кажется особенно непрофессиональным (хотя работает). В любом случае, подскажите, есть ли какое-то более простое решение "обычными способами"?