Sender, при графе - простом цикле два этих цикла подходят условию, циклы в наборе могут повторяться.
Пропущенное в доказательстве:
Если граф можно разрезать так, что разрезаются два ребра, разделить граф на две части и соединить два ребра в каждой части. Если граф можно разрезать так, что разрезаются три ребра, и в каждой части более одной вершины, то разделить граф на две части и соединить в каждой части три разрезанных ребра.
Если в графе, разделенном на цикл и остальную часть графа, разрезается нечетное количество ребер, то три ребра соединяются; цикл же при этом становится новым графом без мостов.
Если цикл в графе состоит из четырех ребер и есть два ребра, соединяющие первую и третью или вторую и четвертую вершины цикла, то выделить эти ребра в отдельный подграф. Получаются две вершины, соединенные тремя путями по два ребра каждый. Если три вершины соединены, то получается двудольный граф
, в котором легко можно выделить нужные циклы. Если соединены две вершины, то третья вершина и ребро от двух вершин соединяются. Мы получаем граф, в котором разрез разрезает два ребра. Если вершины не соединены, то разрез разрезает три ребра и получаются два подграфа, каждый из которых идет в работу дальше.