2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 173, 174, 175, 176, 177, 178, 179 ... 215  След.
 
 Re: Пентадекатлон мечты
Сообщение21.11.2022, 20:10 
Заслуженный участник


20/08/14
11766
Россия, Москва
Huz в сообщении #1570732 писал(а):
I think the intention is to rule out $p^2$ for $p$ greater than some threshold "pmin", but that threshold does not seem to be set in the program. I suspect that I should read "qrmax=10000;" as an abbreviation of "pmin=1e9; qrmax=stop/pmin^2;".
pmax is up to which p will have to be searched in pcoul. Not pmin, pmax.

Huz в сообщении #1570732 писал(а):
I'm not sure if "0e9" in "forprime(p=0e9,pmax,..." is a typo or some PARI construct with a special meaning.
forprime(p=0e9,pmax,...); - is an iterator only over prime numbers from 0e9=0*10^9=0 to pmax.

Huz в сообщении #1570732 писал(а):
It is not clear why "qrmin=13*2;". I think there are some additional assumptions embedded here, but I'm not sure which ones. Why are we not interested in, for example, $166p^2$?
qrmin=26 because this is the minimum value of qr that can be constructed from the prime numbers $q\ge13, q>r, r\ge2$.
$166p^2$ will be checked as $q=83, r=2, qrmin \le qr \le qrmax, qrmin<167, qrmax>165$.

Huz в сообщении #1570732 писал(а):
It is not clear why "rr=min(rmax,M/13);", I think this is perhaps another way of involving qrmin, but I don't understand it.
There is no point to check $r<q$ bigger $\sqrt{qr}$ or bigger $stop/p^2/13$, where $13$ is the minimal prime that can pair to the $r$. Otherwise either we repeat iterate (at $q<r$), or $p^2 q r$ becomes larger than $stop$.

Huz в сообщении #1570732 писал(а):
I think that if qrmax were derived from pmin as above it would guarantee M <= qrmax, so we can replace "qq=min(qrmax,M)/r;" with "qq=M/r;".
qrmax is set by the person to where he wants to check qr. And qrmin is where to start checking from. This is the person's choice.

-- 21.11.2022, 20:15 --

Huz
Yes, you can get qrmax from pmax, but I set qrmax and get pmax from it. Well, that's how I wrote it.

-- 21.11.2022, 20:57 --

Лучше бы со второй программой разбирались, она за 5ч-6ч передокажет qr для каждого конкретного паттерна (уменьшением порога с 2e10, а не с 1e9). Да, это в сумме дольше, зато заметно проще.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение21.11.2022, 22:01 
Заслуженный участник


20/08/14
11766
Россия, Москва
Запуск pcoul для паттернов с разным LCM и сильным ограничением простых:
Код:
LCM=554400, n=3, after 31h for p<0.33e6:
T:\M12minimal\Hugo>pcoul -f11 -g3 -x1e22 -p33e4 -b1952 -v 12 11
001 pcoul(12 11) -p330000 -f11 -g3 -x10000000000000000000000 -b1952 *RT*
367 coul(12, 11): recurse 3199314730, walk 3419705215, walkc 12497747459 (20818.01s)

LCM=3880800, n=3, after 4.5h for p<0.3e6:
T:\M12minimal\Hugo>pcoul -f11 -g3 -x1e22 -p30e4 -b2102 -v 12 11
001 pcoul(12 11) -p300000 -f11 -g3 -x10000000000000000000000 -b2102 *RT*
367 coul(12, 11): recurse 1069570892, walk 1153793985, walkc 4493314353 (6273.21s)

LCM=6098400, n=3, after ~2h for p<0.33e6:
T:\M12minimal\Hugo>pcoul -f11 -g3 -x1e22 -p33e4 -b2134 -v 12 11
001 pcoul(12 11) -p330000 -f11 -g3 -x10000000000000000000000 -b2134 *RT*
367 coul(12, 11): recurse 866851758, walk 930328285, walkc 3749615201 (5824.33s)
Т.е. выглядит разумно ограничиться скажем p<1e6 для всех LCM>554400, до которого можно снизить порог где-то за час. А для LCM=554400 лучше потратить часов три-пять и снизить до 2e6-4e6. Это если считаем доказанным порог p<1e9 для всех паттернов, иначе ещё везде плюс около 6ч на его снижение с 2e10 до 1e9.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение21.11.2022, 22:05 


05/06/22
293
Huz в сообщении #1570732 писал(а):
think the intention is to rule out $p^2$ for $p$ greater than some threshold "pmin", but that threshold does not seem to be set in the program. I suspect that I should read "qrmax=10000;" as an abbreviation of "pmin=1e9; qrmax=stop/pmin^2;".
EUgeneUS в сообщении #1570742 писал(а):
It's pmax in the code. :-)
Dmitriy40 в сообщении #1570752 писал(а):
pmax is up to which p will have to be searched in pcoul. Not pmin, pmax.

Well that's the confusing thing. We're trying to ensure we cover all possible $p^2qr$, and we want to let PARI do some of the work and pcoul the rest of it. Let me call the cut-off Z for now. The plan is to run pcoul with "-pZ", which will check $0 < p \le Z$. So I expect the PARI code to check $Z < p \le \max$, for some computed maximum. If "qrmin" is correctly calculated as the minimum valid $qr$, then "sqrt(stop/qrmin)" seems like the correct way to get the computed maximum, but when I talk about "pmin" I'm talking about that value Z. If you're going to calculate it from qrmax, it would probably be "sqrt(stop/qrmax)", but that calculation also does not appear.

Huz в сообщении #1570732 писал(а):
It is not clear why "qrmin=13*2;". I think there are some additional assumptions embedded here, but I'm not sure which ones. Why are we not interested in, for example, $166p^2$?
EUgeneUS писал(а):
Код:
qrmin=13*2 = 26
(I read also wrong earlier :-) )
Dmitriy40 писал(а):
qrmin=26 because this is the minimum value of qr that can be constructed from the prime numbers $q\ge13, q>r, r\ge2$.
$166p^2$ will be checked as $q=83, r=2, qrmin \le qr \le qrmax, qrmin<167, qrmax>165$.

Sorry; I read it correctly to start with, then got it wrong when I added the 166 example at the last minute before posting.
So, rather, why are we not interested in eg $qr=22$? Which is to say, why are we only interested in $q \ge 13$?

Overall, if the intention is to combine work from PARI with work from pcoul, it would make sense to me to have a PARI function that takes arguments (pmin, pmax, stop) that would rule out chains with $p^2qr <= stop: pmin \le p \le pmax$.

Цитата:
Лучше бы со второй программой разбирались, она за 5ч-6ч передокажет qr для каждого конкретного паттерна (уменьшением порога с 2e10, а не с 1e9). Да, это в сумме дольше, зато заметно проще.

I'll try to look at that one too.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение21.11.2022, 23:57 
Заслуженный участник


20/08/14
11766
Россия, Москва
Huz в сообщении #1570768 писал(а):
So I expect the PARI code to check $Z < p \le \max$, for some computed maximum.
But no one forbids checking not $Z<p<\max$, but this much $0<p<\max$.
Huz в сообщении #1570768 писал(а):
If "qrmin" is correctly calculated as the minimum valid $qr$, then "sqrt(stop/qrmin)" seems like the correct way to get the computed maximum, but when I talk about "pmin" I'm talking about that value Z. If you're going to calculate it from qrmax, it would probably be "sqrt(stop/qrmax)", but that calculation also does not appear.
I repeat: qrmin and qrmax are set by the person at will, well, that's how I wrote the program. And from them should get $pmin=Z=\sqrt{10^{22}/qrmax}$ and $pmax=\sqrt{10^{22}/qrmin}$, but I accept that pmin=0, I have the right, just add to myself work, nothing more. But of course $Z$ is not zeroed, it remains $Z=\sqrt{10^{22}/qrmax}$.
Huz в сообщении #1570768 писал(а):
So, rather, why are we not interested in eg $qr=22$? Which is to say, why are we only interested in $q \ge 13$?
Because I took the conditions $q\ge 13, q>r, r\ge 2, q\cdot r=qr<qrmax$ (which of $q,r$ to choose is greater and which is less is arbitrary, I took $q>r$). With these conditions there is no way we can get $qr<26$. And the condition $q\ge 13$ is due to the fact that we have already placed all the smaller primes in the pattern.
All possible variants $13>q>r \ge 2$ can be eliminated at once for all patterns by a single enumeration of $p^2$ up to $p<\sqrt{10^{22}/6}<4.1\cdot10^{10}$, even if one does not believe my proofs from page 140 of this thread. Or one can of course relax the conditions on qrmin and qrmax here as well.

-- 22.11.2022, 00:37 --

Program:
Код:
qrall=Set([2*5,2*7,2*11,3*5,3*7,3*11,5*7,5*11,7*11]); pmin=1e9; pmax=sqrt(stop/vecmin(qrall));\\qrall - sorted vector from min to max
{forprime(p=pmin,pmax,
   foreach(qrall,qr,
      h=p^2*qr; nn=round(h/32); if(h>stop, qrall=setminus(qrall,[qr]); break, !ispseudoprime(nn), next);\\To accelerate, delete a value that is too large and interrupt the loop.
      h=nn*32; x=h%18;
      if(x==2,   if(!ispseudoprime((h-2)/18) || numdiv(h+2)!=12, next);
      , x==16,   if(!ispseudoprime((h+2)/18) || numdiv(h-2)!=12, next);
      ,      next;
      );
      if(numdiv(h-1)!=12 || numdiv(h+1)!=12, next);
      print("32x=",h);
   );
   if(#qrall==0, break);\\If qrall is empty then exiting
)}
Estimate work time is 4h.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение22.11.2022, 08:23 
Аватара пользователя


11/12/16
13850
уездный город Н
Dmitriy40 в сообщении #1570752 писал(а):
Лучше бы со второй программой
разбирались, она за 5ч-6ч передокажет qr для каждого конкретного паттерна (уменьшением порога с 2e10, а не с 1e9). Да, это в сумме дольше, зато заметно проще.


IMHO, нужно разбираться с обеими, и строить двухступнечатый бустер :D
Уменьшение порога до 1e9 сразу для всех паттернов имеет следующие преимущества:
1. Это может быть сделано один раз.
2. Для волонтеров, которые счтают, практически ничего не поменяется - только будет рекомендация использовать ключ при запуске pcoul.

Это уже даст ускорение от 2.3 раз, и сэкономит время (часы на каждый паттерн) для следующец степени.

Для "второй ступени" потребуется:
а) Наличе PARI/GP на стороне волонтеров.
б) Более сложный запуск (последовательно за пускается две программы в разных окружениях)
в) Программа на PARI/GP должна быть снабжена выводом в лог. Теперь от волонеторов должно поступать два артефакта - лог PARI/GP и лог собственно pcoul.
Конечно, всё это решается. Но может потребовать некоторого времени (дни, или 1-2 недели, например).

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение22.11.2022, 08:25 
Аватара пользователя


29/04/13
8111
Богородский
Объединённая таблица по данным на вчера.

$\tikz[scale=.08]{
\fill[green!90!blue!50] (110,150) rectangle (125,210);
\fill[green!90!blue!50] (85,170) rectangle (95,180);
\fill[green!90!blue!50] (0,120) rectangle (140,150);
\draw  (0,210) rectangle  (10,220);
\draw  (10,210) rectangle  (45,220);
\draw  (45,210) rectangle  (55,220);
\draw  (55,210) rectangle  (65,220);
\draw  (65,210) rectangle  (75,220);
\draw  (75,210) rectangle  (85,220);
\draw  (85,210) rectangle  (95,220);
\draw  (95,210) rectangle  (110,220);
\draw  (110,210) rectangle  (125,220);
\draw  (125,210) rectangle  (140,220);
\draw  (0,200) rectangle  (10,210);
\draw  (10,200) rectangle  (45,210);
\draw  (45,200) rectangle  (55,210);
\draw  (55,200) rectangle  (65,210);
\draw  (65,200) rectangle  (75,210);
\draw  (75,200) rectangle  (85,210);
\draw  (85,200) rectangle  (95,210);
\draw  (95,200) rectangle  (110,210);
\draw  (110,200) rectangle  (125,210);
\draw  (125,200) rectangle  (140,210);
\draw  (0,190) rectangle  (10,200);
\draw  (10,190) rectangle  (45,200);
\draw  (45,190) rectangle  (55,200);
\draw  (55,190) rectangle  (65,200);
\draw  (65,190) rectangle  (75,200);
\draw  (75,190) rectangle  (85,200);
\draw  (85,190) rectangle  (95,200);
\draw  (95,190) rectangle  (110,200);
\draw  (110,190) rectangle  (125,200);
\draw  (125,190) rectangle  (140,200);
\draw  (0,180) rectangle  (10,190);
\draw  (10,180) rectangle  (45,190);
\draw  (45,180) rectangle  (55,190);
\draw  (55,180) rectangle  (65,190);
\draw  (65,180) rectangle  (75,190);
\draw  (75,180) rectangle  (85,190);
\draw  (85,180) rectangle  (95,190);
\draw  (95,180) rectangle  (110,190);
\draw  (110,180) rectangle  (125,190);
\draw  (125,180) rectangle  (140,190);
\draw  (0,170) rectangle  (10,180);
\draw  (10,170) rectangle  (45,180);
\draw  (45,170) rectangle  (55,180);
\draw  (55,170) rectangle  (65,180);
\draw  (65,170) rectangle  (75,180);
\draw  (75,170) rectangle  (85,180);
\draw  (85,170) rectangle  (95,180);
\draw  (95,170) rectangle  (110,180);
\draw  (110,170) rectangle  (125,180);
\draw  (125,170) rectangle  (140,180);
\draw  (0,160) rectangle  (10,170);
\draw  (10,160) rectangle  (45,170);
\draw  (45,160) rectangle  (55,170);
\draw  (55,160) rectangle  (65,170);
\draw  (65,160) rectangle  (75,170);
\draw  (75,160) rectangle  (85,170);
\draw  (85,160) rectangle  (95,170);
\draw  (95,160) rectangle  (110,170);
\draw  (110,160) rectangle  (125,170);
\draw  (125,160) rectangle  (140,170);
\draw  (0,150) rectangle  (10,160);
\draw  (10,150) rectangle  (45,160);
\draw  (45,150) rectangle  (55,160);
\draw  (55,150) rectangle  (65,160);
\draw  (65,150) rectangle  (75,160);
\draw  (75,150) rectangle  (85,160);
\draw  (85,150) rectangle  (95,160);
\draw  (95,150) rectangle  (110,160);
\draw  (110,150) rectangle  (125,160);
\draw  (125,150) rectangle  (140,160);
\draw  (0,140) rectangle  (10,150);
\draw  (10,140) rectangle  (45,150);
\draw  (45,140) rectangle  (55,150);
\draw  (55,140) rectangle  (65,150);
\draw  (65,140) rectangle  (75,150);
\draw  (75,140) rectangle  (85,150);
\draw  (85,140) rectangle  (95,150);
\draw  (95,140) rectangle  (110,150);
\draw  (110,140) rectangle  (125,150);
\draw  (125,140) rectangle  (140,150);
\draw  (0,130) rectangle  (10,140);
\draw  (10,130) rectangle  (45,140);
\draw  (45,130) rectangle  (55,140);
\draw  (55,130) rectangle  (65,140);
\draw  (65,130) rectangle  (75,140);
\draw  (75,130) rectangle  (85,140);
\draw  (85,130) rectangle  (95,140);
\draw  (95,130) rectangle  (110,140);
\draw  (110,130) rectangle  (125,140);
\draw  (125,130) rectangle  (140,140);
\draw  (0,120) rectangle  (10,130);
\draw  (10,120) rectangle  (45,130);
\draw  (45,120) rectangle  (55,130);
\draw  (55,120) rectangle  (65,130);
\draw  (65,120) rectangle  (75,130);
\draw  (75,120) rectangle  (85,130);
\draw  (85,120) rectangle  (95,130);
\draw  (95,120) rectangle  (110,130);
\draw  (110,120) rectangle  (125,130);
\draw  (125,120) rectangle  (140,130);
\node at (4.7,215){\text{1044}};
\node at (28,215){\text{LCM}};
\node at (50,215){\text{3}};
\node at (60,215){\text{4}};
\node at (70,215){\text{5}};
\node at (80,215){\text{6}};
\node at (90,215){\text{7}};
\node at (103,215){\text{Total}};
\node at (118,215){\text{Done}};
\node at (133,215){\text{Work}};
\node at (5.6,205){\text{1.}};
\node at (36,205){\text{554400}};
\node at (50,205){\text{8}};
\node at (60,205){\text{30}};
\node at (70,205){\text{28}};
\node at (104,205){\text{66}};
\node at (90,205){\text{}};
\node at (118,205){\text{1}};
\node at (133,205){\text{?}};
\node at (5.6,195){\text{2.}};
\node at (35,195){\text{3880800}};
\node at (50,195){\text{8}};
\node at (60,195){\text{46}};
\node at (70,195){\text{60}};
\node at (80,195){\text{28}};
\node at (103,195){\text{142}};
\node at (118,195){\text{7}};
\node at (133,195){\text{?}};
\node at (5.6,185){\text{3.}};
\node at (35,185){\text{6098400}};
\node at (50,185){\text{8}};                       
\node at (60,185){\text{46}};
\node at (70,185){\text{78}};
\node at (80,185){\text{48}};
\node at (103,185){\text{180}};
\node at (118,185){\text{10}};
\node at (133,185){\text{?}};
\node at (5.6,175){\text{4.}};
\node at (34,175){\text{42688800}};
\node at (50,175){\text{8}};
\node at (60,175){\text{54}};
\node at (70,175){\text{94}};
\node at (80,175){\text{60}};
\node at (90,175){\text{10}};
\node at (103,175){\text{226}};
\node at (118,175){\text{28}};
\node at (133,175){\text{?}};
\node at (5.6,165){\text{5.}};
\node at (32,165){\text{1331114400}};
\node at (50,165){\text{}};
\node at (60,165){\text{8}};
\node at (70,165){\text{30}};
\node at (80,165){\text{28}};
\node at (104,165){\text{66}};
\node at (118,165){\text{35}};
\node at (133,165){\text{?}};
\node at (5.6,155){\text{6.}};
\node at (32,155){\text{8116970400}};
\node at (50,155){\text{}};
\node at (60,155){\text{8}};
\node at (70,155){\text{26}};
\node at (80,155){\text{24}};
\node at (104,155){\text{58}};
\node at (118,155){\text{51}};
\node at (133,155){\text{?}};
\node at (5.6,145){\text{7.}};
\node at (31,145){\text{14642258400}};
\node at (60,145){\text{8}};
\node at (70,145){\text{42}};
\node at (80,145){\text{66}};
\node at (90,145){\text{36}};
\node at (103,145){\text{152}};
\node at (118,145){\text{152}};
\node at (133,145){\text{}};
\node at (5.6,135){\text{8.}};
\node at (31,135){\text{56818792800}};
\node at (60,135){\text{8}};
\node at (70,135){\text{38}};
\node at (80,135){\text{40}};
\node at (90,135){\text{10}};
\node at (104,135){\text{96}};
\node at (118,135){\text{96}};
\node at (5.6,125){\text{9.}};
\node at (28,125){\text{19488845930400}};
\node at (70,125){\text{8}};
\node at (80,125){\text{26}};
\node at (90,125){\text{24}};
\node at (104,125){\text{58}};
\node at (118,125){\text{58}};
}$

Я ещё готовлю конкретные списки посчитанных паттернов. Вот первые три группы:

1. b1952:LCM554400-81049-8

1. b532:LCM3880800-2567641-5
2. b553:LCM3880800-2697241-5
3. b563:LCM3880800-3755641-5
4. b1629:LCM3880800-1313145-7
5. b1632:LCM3880800-254745-7
6. b1635:LCM3880800-2018745-7
7. b2102:LCM3880800-681241-8

1. b112:LCM6098400-1334745-4
2. b113:LCM6098400-3048345-4
3. b114:LCM6098400-4761945-4
4. b116:LCM6098400-377145-4
5. b117:LCM6098400-1233945-4
6. b118:LCM6098400-2090745-4
7. b511:LCM6098400-3950041-5
8. b520:LCM6098400-5562841-5
9. b581:LCM6098400-3105945-5
10. b2134:LCM6098400-378841-8

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение22.11.2022, 08:31 
Аватара пользователя


11/12/16
13850
уездный город Н
Yadryara в сообщении #1570831 писал(а):
1. b1952:LCM554400-81049-8

Этот Вы откуда взяли?

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение22.11.2022, 08:42 
Аватара пользователя


29/04/13
8111
Богородский
EUgeneUS, кстати, хороший вопрос. Разумеется нужна сверка списков. Другие паттерны тоже прошу сверять.

А взял я его, естественно, с предыдущей страницы:

Dmitriy40 в сообщении #1570724 писал(а):
Пример извращения: потратив 31ч на уменьшение порога до 0.33e6 для b1952 (плюс 5.5ч на уменьшение с 2e10 до 1e9 если не сделано для всех, плюс 20м на проверку кубоквадратов для всех) потом его удалось проверить за 5.8ч:
Код:
T:\M12minimal\Hugo>pcoul -f11 -g3 -x1e22 -p33e4 -b1952 -v 12 11
001 pcoul(12 11) -p330000 -f11 -g3 -x10000000000000000000000 -b1952 *RT*
367 coul(12, 11): recurse 3199314730, walk 3419705215, walkc 12497747459 (20818.01s)

Крупный шрифт мой.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение22.11.2022, 09:33 
Аватара пользователя


11/12/16
13850
уездный город Н
Yadryara в сообщении #1570834 писал(а):
Разумеется нужна сверка списков.

Разумеется, никакой сверки списков на данный момент не нужно.

Yadryara в сообщении #1570834 писал(а):
А взял я его, естественно, с предыдущей страницы:

То есть пробный запуск для засечки времени расчета, Вы решили использовать для "зачёта" :facepalm:

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение22.11.2022, 09:41 
Аватара пользователя


29/04/13
8111
Богородский
EUgeneUS в сообщении #1570837 писал(а):
Разумеется, никакой сверки списков на данный момент не нужно.

Почему?

EUgeneUS в сообщении #1570837 писал(а):
То есть пробный запуск для засечки времени расчета, Вы решили использовать для "зачёта"

На данный момент, да. Паттерн, как я понял, полностью обсчитан. Если это не так, тогда уберу его из списка. То есть сверка как раз нужна.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение22.11.2022, 10:02 
Аватара пользователя


11/12/16
13850
уездный город Н
Yadryara в сообщении #1570838 писал(а):
Почему?

Потому что wasted time.

Во-1х, Вы так и не предоставили оценку, какой даст профит "сверка списков". В часах машинного времени, например.
Во-2х. Есть некоторые основания полагать, что методы ускорения счета могут быть встроены в поток рассчетов, который координируется Хуго. Когда\если это случится, все результаты, полученные в других потоках, будет однозначно дешевле пересчитать, чем объединять.

Yadryara в сообщении #1570838 писал(а):
На данный момент, да. Паттерн, как я понял, полностью обсчитан

Когда Вы объявляете о каком-то результате, а Вы именно объявляете о результате обсчета паттерна b1952, Вы должны предоставить эти результаты. Именно предоставить, а не отправить за ними к Дмитрию. А у Вас их нет.
И да, опять приходится объяснять банальные вещи.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение22.11.2022, 10:35 
Аватара пользователя


29/04/13
8111
Богородский
EUgeneUS в сообщении #1570842 писал(а):
Потому что wasted time.

Обоснуйте, пожалуйста.

EUgeneUS в сообщении #1570842 писал(а):
Во-1х, Вы так и не предоставили оценку, какой даст профит "сверка списков". В часах машинного времени, например.

Во-1-х, я не говорил о каком-либо профите.

Во-2-х, вы тоже не предоставили оценку.

EUgeneUS в сообщении #1570842 писал(а):
Когда\если это случится, все результаты, полученные в других потоках, будет однозначно дешевле пересчитать, чем объединять.

Обоснуйте, пожалуйста.

EUgeneUS в сообщении #1570842 писал(а):
Когда Вы объявляете о каком-то результате, а Вы именно объявляете о результате обсчета паттерна b1952, Вы должны предоставить эти результаты.

Опять необоснованное утверждение. Кому я должен?? Я таких обязательств пока что не давал и давать пока не планирую.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение22.11.2022, 11:18 
Аватара пользователя


11/12/16
13850
уездный город Н
Yadryara в сообщении #1570850 писал(а):
Во-1-х, я не говорил о каком-либо профите

То есть Вы предлагаете позаниматься бесполезной деятельностью?

Yadryara в сообщении #1570850 писал(а):
Во-2-х, вы тоже не предоставили оценку.

Вы же предлагаете делать взносы сверять списки и объединять результаты, Вам и обосновывать, что это имеет смысл.

Yadryara в сообщении #1570850 писал(а):
Я таких обязательств пока что не давал и давать пока не планирую.

Кстати, а что Вы планируете? Вопрос не праздный и не риторический.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение22.11.2022, 11:44 
Заслуженный участник


20/08/14
11766
Россия, Москва
Yadryara
Если Вы добавляете мой результат в список, то верите/доверяете следующему:
1. Что я запустил всё верно и pcoul выдала именно то что выдала (и не выдала решения).
2. Что программа уменьшения порога до 0.33e6 свободна от ошибок, ничего не пропускает и отработала верно.
3. Что программа уменьшения порога до 1e9 свободна от ошибок, ничего не пропускает и отработала верно.
4. Что программа проверки кубоквадратов (хоть месячной давности, хоть вчерашняя) свободна от ошибок, ничего не пропускает и отработала верно.
5. Что программа проверки $p^3q^2, 1<r<q<13$ свободна от ошибок, ничего не пропускает и отработала верно.
6. Возможно и ещё какой-то тест был выполнен или нужен ...
Пункты 2-5 разве кто-то проверил? Эти программы кто-то кроме меня вообще запускал? Я так понял это всё ещё в процессе. А если проверили, то где заявление об этом?
Поэтому я не считаю правильным добавлять мои тестовые запуски в список проверенных. И я нигде о таком не заявлял и логов Хуго не отправлял.
Это относится ко всем трём паттернам: b1952, b2102, b2134.

В принципе пункты 2-5 можно объединить в одной программе, причём в последней выложенной (она кстати отработала и ничего длиннее 4шт шестёрок не нашла), ради простоты понимания, но пункты 3,4,5 удобнее выполнить один раз и они будут валидны сразу для всех паттернов.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение22.11.2022, 11:45 
Аватара пользователя


29/04/13
8111
Богородский
EUgeneUS в сообщении #1570866 писал(а):
То есть Вы предлагаете позаниматься бесполезной деятельностью?

Конечно нет. Я считаю, что сверять данные полезно. Это обычно позволяет повысить их надёжность. В предыдущих постах уже описывал свою позицию.

Кстати, предлагаю вам взять назад слова про то, что я якобы должен.

EUgeneUS в сообщении #1570866 писал(а):
Кстати, а что Вы планируете?

В самое ближайшее время всё-таки планирую пополнить список.

Кстати, вот черновой вариант для шага 42688800 уже есть. Здесь, правда, пока не всё.

(42688800)

b121:LCM42688800-28370745-4
b124:LCM42688800-11789145-4
b125:LCM42688800-37896345-4
b129:LCM42688800-4733145-4
b130:LCM42688800-17786745-4
b131:LCM42688800-30840345-4

b139:LCM42688800-1816569-4 ?
b142:LCM42688800-14870169-4 ?
b144:LCM42688800-37449369-4 ?

b530:LCM42688800-6448441-5
b540:LCM42688800-10804441-5
b561:LCM42688800-38682841-5
b570:LCM42688800-34353945-5
b571:LCM42688800-4718745-5
b590:LCM42688800-24014745-5

b1626:LCM42688800-23186745-7
b1627:LCM42688800-36240345-7
b1630:LCM42688800-19658745-7
b1633:LCM42688800-29184345-7
b1636:LCM42688800-12602745-7

LCM42688800-3050041-4
LCM42688800-30086041-4
LCM42688800-29157241-4
LCM42688800-19631641-4
LCM42688800-19502041-4
LCM42688800-23186745-8
LCM42688800-23057145-8
LCM42688800-13531545-8
LCM42688800-12602745-8
LCM42688800-39638745-8

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3218 ]  На страницу Пред.  1 ... 173, 174, 175, 176, 177, 178, 179 ... 215  След.

Модераторы: Karan, Toucan, PAV, maxal, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Dmitriy40


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group