Не закладывают
Закладывают. Незнание деталей микроскопических состояний превращается в статистику и вероятности макросостояний.
Это банальные утверждения, из которых ничего не следует.
Попробую ввести конкретику.
На всякий случай оговорюсь что разумеется, говоря ниже про "классическом мире" имеется ввиду именно известная математическая модель классической детерминиской физики (не путать с реальным миром). И разумеется, имеются ввиду фундаментальные уравнения, а НЕ та "случайность" которая "закладывается руками" для упрощений (о чем и сказал
KVV).
"Вопрос" в том является ли эта модель вычислимой (и что под этом подразумевается), и является ли "генерируемая ею случайность" псевдослучайностью (как числа, генерируемые стандартным алгоритмом).
Выше
warlock66613 правильно заметил, что "детерминированость" и "вычислимость" в общем случае, не равнозначные понятия.
Хотя в классической модели все уравнения как по смыслу так и по интерпретацию детерминированые и конечные, она предполагает как домен параметров классических систем реальные числа (которых континуум).
В этом смысле, "нельзя
сразу вычислить со всей бесконечной точностью" даже поведение простейшей материальной точки - уже просто потому, что начальные условия (которые нужно закласть в уравнения) известны с какой-то не-бесконечной точностью, а чтобы их "точно задать" придется закласть в уравнения бесконечное количество информации (в общем случае).
Самый наглядный пример это поведение систем "детерминисткого хаоса" - когда неточность начальных условий разбегается экспоненциально. Возьмем такую класс. систему что например, по уравнениям удваивает неопределенность начальных условий за фиксированный период временной эволюции ("такт"). Очевидно, что после прохождения "несколько тактов" исчерпаются все разряды точности с которыми были известны начальные условия (их параметры - реальные числа), и далее состояние/поведение системы будет "случайным" в смысле неизвестным (непредсказуемым из начальных данных), т.к. будет определяться дальнейшими неизвестными разрядами реальных чисел - параметров начального состояния.
(все было бы не так, если парадигма классического мира предполагала например дискретные параметры физ.систем наподобие клеточных автоматов - тогда вычислимость и "псевдослучайность" итак очевидны - но классическая парадигма не такая).
Дело однако в том, что та же самая классическая математическая модель мира, не накладывает никакие определенные ограничения на возможной точности с которым могут быть известны состояния (в "квантах" например, не так).
Поэтому, раз величины параметров системы могут быть принципиально известными с произвольной точностью, то и сами системы вычислима хотя и не "
сразу со всей бесконечной точностью", но зато
с любой требуемой точностью (это относится ко всех систем, вкл. и "хаотических" и т.д).
Но именно это и считается достаточным, чтобы считать что-то вычислимым по стандартному определению.
Например, число
считается вычислимым не потому, что оно может быть рассчитано стандартным алгоритмом "
сразу со всей бесконечной точностью"; а потому что может быть вычислено
с любой требуемой точностью.
В том же самом смысле, являются и псевдослучайными случайные величины хаотических классических систем - их "случайность" (незнание) можно убрать просто повысив точность измерений параметров системы (а на точность никаких принципиальных ограничений в классической парадигме нет).
Если к "парадигме мат. модели классического мира" присовокупить принципиальное ограничение на точность - например назначить от балды
как мировую константу точности измерений значения параметров (координату, импульс и пр) которая ни за что не может быть превзойдена. Тогда получится то, о чем кажется говорит
warlock66613 - детерминированная теория, но в общем случае невычислимая (и с "истинной случайности" напр. реализируемой через детерминированных хаотических классических систем после "несколько тактов", когда максимальное дозволенное точности начальных условий превзойдено).
Но ничего такого в классической парадигме нет, в ней допустима произвольная точность. А значит, все там вычислимо, и "случайности" в ней - псевдослучайности именно в стандартном смысле этих понятий.