Здравствуйте. Пытаюсь разобраться с теоремой Поша о гамильтоновых циклах.
https://neerc.ifmo.ru/wiki/index.php?title=%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D0%BE%D1%88%D0%B0Не могу понять вот эту строчку:
Цитата:
Так как по предположению число вершин со степенями, не превосходящими
, меньше чем m, то хотя бы одна из m вершин
, скажем
, должна иметь степень не меньше
. Итак, мы установили, что степени двух несмежных вершин
и
не меньше
.
А почему
и
не смежны. Конечно, если
тогда да, но если нет? Тогда
и
могут быть смежны, потому что в этом случае гамильтонового цикла не образуется. Ещё не понятна эта запись:
Цитата:
Как и выше, обозначим через
вершины графа
, смежные с
, и заметим, что вершина
не может быть смежной ни с одной из m вершин
для
.
Что в этом случае тогда будет означать вершина
?
Ещё не понял, почему на приведенном рисунке вершина
смежна с
.
Помогите разобраться, пожалуйста. Очень долго уже сижу, не могу разобрать, а это единственное доказательство в интернете.