...
В общем случае если есть кольцо
(в случае абелевых групп
) и некоторый
-модуль
(модуль над целыми числами = абелева группа), то
называется свободным
-модулем если он изоморфен модулю вида
, где
-некоторое множество индексов и кардинал
называется рангом свободного модуля
. Просто выражение "ранг кольца" смысла не имеет (если заранее не сказано что это кольцо это алгебра над другим кольцом, тогда имеется в виду ранг как модуля над тем другим кольцом). ...
Можно шагнуть чуть дальше и воспользоваться структурной теоремой для конечно-порождённых модулей над кольцами главными идеалов (в точности тоже самое что и для абелевых групп) и тогда выражение "ранг модуля" тоже будет осмысленным.
Честно говоря, тот пример, что вдохновил меня написать - это, теорема(?), что идеал аугментации
группового кольца свободной группы:
будет иметь ранг = количеству её порождающих, даже если их бесконечно. Ну, что это свободный модуль. Просто главное - равенство нулю суммы коэффициентов, а там точно могут быть суммы разных элементов
с коф-ами. В итоге лин.комбинаци будут длиннее количества порождающих. Правда в случае бесконечности будет как-то всё-равно, но всё же.
Я почти сразу понял, что можно взять произведения(может и сложения) всех элементов вида
где
порождающие
, с количеством
,
И так вполне можно получить все остальные - элементы группы будут создавать новые, а сумма коэффициентов осталась 0.
Но вот один человек говорил мне, что всё может быть по сложению - в
не все лин-комбинации будут независимыми, и надо как-то это проверить. А может быть, всё совпадёт..