kzvНьютоновская гравитация уже была получена в параграфе 99. Зачем ее еще раз тут выводить? Здесь ищется именно точное решение.
При выводе точной метрики в центрально-симметричногом случае (за ньютоновским пределом, т.е. без приближений) мы получаем сложные дифференциальные уравнения, с которыми не знаем как быть. Далее мы замечаем, что если взять следующий центрально-симметричный случай - компактная масса в вакууме (это частный случай, в общем же случае вещество может быть всюду) - то эти уравнения именно в вакуумной области проинтегрировать можно, что и дает метрику Шварцшильда. Просто внутри этой компактной массы мы не знаем, как точно решать уравнения. А снаружи - знаем. Тут все совершенно физично. Это полностью соответствует поиску гравитационного потенциала вокруг сферической массы у Ньютона.
Когда мы нашли решение вне тела, можем теперь увеличивать его плотность (т.е. уменьшать радиус при неизменной массе) вплоть до бесконечности. Тогда получаем вакуумное решение везде, кроме одной точки. У Ньютона мы получаем точечную массу, а в ОТО - черную дыру.
Когда ищут постоянную интегрирования, то просто используют тот факт, что она уже нам известна из ньютоновской гравитации. Т.е. мы ее уже измерили, зачем же еще раз мерить?
Вообще тут, по моему, все очень даже ясно. Аналогия с такой же ньютоновской задачей совершенно полная. У Ньютона можно поставить задачу: найти гравитационный потенциал для сферической массы. Мы пишем дифференциальное уравнение для потенциала
и замечаем, что вне тела в вакууме это уравнение особенно простое
, и его легко решить. А внутри тела оно сложное, т.к.
зависит от радиуса неизвестным образом, и нам нужно знать, как плотность зависит от давления. Это все уже заметно сложнее, т.к. решение начинает зависеть не только от массы, но и от других свойств вещества (от его уравнения состояния).
В ОТО решается совершенно та же задача, и при этом возникает совершенно та же трудность.