Составить уравнение линии второго порядка, касающейся сторон треугольника PQR и имеющей центр в точке S(2,1), если известны координаты вершин P(0,0), Q(5,0), R(0,4).
Я пробовал решить через составление системы уравнений по формулам для касательной. Например, возьмем точку на прямой PQ, она будет иметь вид (m,0) и подставим в уравнение касательной.
. Затем приравниваем к PQ: y=0 и получается система:
. И так для всех трех касательных, по получается тогда огромная система и еще уравнения на центр кривой. Получается 11 уравнений с 9 неизвестными. Есть ли способ решить это проще? Не могу додуматься.