Для ответа на вопрос упражнения, как выше было написано, достаточно вычислить значение производной
. Вместо этого можно было бы найти решение уравнения и ответить на вопрос упражнения, но качественные рассуждения сильно экономят время на решение вопроса о типе точки покоя.
Действительно, в данном упражнении рассматривается «неполное» уравнение первого порядка (не содержит независимую переменную). Это уравнение имеет решение
и общее решение, которое в квадратурах можно записать в параметрическом виде:
Интеграл выражается через интегральные синусы и логарифм от модуля
. Знание интегрального синуса для ответа на вопрос упражнения не имеет значения: главное, что интеграл
сходится, например, по признаку Дирихле. Следовательно
, при
.
стремится к
, при
. Таким образом, решение
является асимптотой для остальных решений уравнения. Рис. ниже иллюстрирует это.
Вложение:
Комментарий к файлу: Mapl 7. v =-0.2..0.2
solution.PNG [ 22.75 Кб | Просмотров: 0 ]
[Однако такой путь немного утомительней, чем вычислить производную. И заданию совсем не соответствует.]