2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Изогнутый заряженный стержень
Сообщение07.05.2021, 21:43 


21/07/20
242
Однородно заряженный стержень заряда q и длины l изогнут посередине так, что его половины составляют угол $\alpha$ . Определите напряженность электрического поля на биссектрисе этого угла на малом расстоянии r от его вершины.

 Профиль  
                  
 
 Re: Изогнутый заряженный стержень
Сообщение08.05.2021, 02:12 
Заслуженный участник


20/04/10
1876
Рассмотреть конус (вращение стержня) и найти потенциал на оси. Интегрировать в сферических координатах.

 Профиль  
                  
 
 Re: Изогнутый заряженный стержень
Сообщение08.05.2021, 11:44 
Заслуженный участник
Аватара пользователя


30/01/09
7067
Чего-то у меня крайне простой ответ получился. Настолько простой, что я подозреваю, что либо я где-то ошибся, либо олимпиадность задачи заключается в том, что решение можно найти без всяких потенциалов, интегралов и производных. Пока ответ публиковать не буду. Буду перепроверять. А решал я так. Потенциал заряженного отрезка относительно точки мы можем найти. Это простой интеграл. У нас два отрезка, которые симметричны относительно точки. Значит потенциал удваиваем. Ну, а напряжённость поля есть градиент от этого потенциала.

 Профиль  
                  
 
 Re: Изогнутый заряженный стержень
Сообщение08.05.2021, 15:32 


27/08/16
10195

(ответ)

$E=\frac{q}{2\pi\varepsilon r L}$, где $r$ - расстояние до угла. Без интегрирования, но всё равно возня с потенциалами и бесконечно малыми, в которых $\alpha$ сокращается. Как проще?

 Профиль  
                  
 
 Re: Изогнутый заряженный стержень
Сообщение09.05.2021, 10:15 
Заслуженный участник


21/09/15
998
Если начинать непосредственно с напряженности и считать через углы, то с помощью геометрии/тригонометрии интеграл очень упрощается.
Можно, наверно, его даже совсем замаскировать до видимого исчезновения и предлагать задачу школьникам. Но все равно интеграл там будет.
Как можно совсем без интеграла? И чем конус лучше? В конусе же поверхностная плотность заряда не будет постоянной; так на так и получится.
Возможен, также, такой поворот событий, что есть формула, которую леди и джентльмены должны знать.

 Профиль  
                  
 
 Re: Изогнутый заряженный стержень
Сообщение09.05.2021, 11:23 
Заслуженный участник


20/04/10
1876
Да, похоже, что с конусом проще не будет. Думал, что интеграл будет проще.

 Профиль  
                  
 
 Re: Изогнутый заряженный стержень
Сообщение09.05.2021, 11:41 


27/08/16
10195
Без интегралов - замечаем, что при смещении точки по биссектрисе, изменение потенциала связано только с участками на концах, которые становятся видны под другими углами. Что следует из интеграла в полярных координатах и постоянства линейной плотности заряда, но сам интеграл брать не нужно, достаточно подобия фигур.

 Профиль  
                  
 
 Re: Изогнутый заряженный стержень
Сообщение09.05.2021, 16:43 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Забавно, что если изогнуть бесконечный стержень, то получится точный ответ, совпадающий с формулой для бесконечного неизогнутого стержня. С той разницей, что расстояени меряем от вершины.
Другими словами берём бесконечный стержень, изгибаем в какой-то точке, а напряженность поля на биссектрисе не меняется. Можно ли это доказать без интегралов?

 Профиль  
                  
 
 Re: Изогнутый заряженный стержень
Сообщение09.05.2021, 17:20 
Заслуженный участник


20/04/10
1876
Можно и без интегралов. Используем ответ для изогнутого стержня длины $\ell$ :-)
$$E=\frac{2k q}{x\sqrt{\ell^2+4x^2-4\ell x \cos\theta}}$$
Видно, что переход к пределу по $\ell$ стирает информацию об угле. Причём как к $+\infty$, так и к нулю.

 Профиль  
                  
 
 Re: Изогнутый заряженный стержень
Сообщение09.05.2021, 20:17 


21/07/20
242
lel0lel в сообщении #1517787 писал(а):
$$E=\frac{2k q}{x\sqrt{\ell^2+4x^2-4\ell x \cos\theta}}$$

С этой формулы и я начинал. При ее выводе пришлось вычислить простенький интеграл от синуса.
Следствия формулы для бесконечного стержня удивили: напряженность поля на биссектрисе угла не зависит от угла и формула имеет такой же вид, как для прямого провода.
Захотелось получить этот результат, не опираясь на общую формулу.
Сначала доказал (без интегрирования), что напряженность поля одинакова в равноудаленных от вершины точках, одна из которых лежит на биссектрисе внутри угла, а другая на биссектрисе "вне угла" (то есть на биссектрисе угла $2\pi-\alpha$). Тоже, на мой взгляд, контринтуитивный результат.
Дальше просто: вычислил напряженность поля двух пересекающихся бесконечно длинных прямых стержней и результат разделил на 2.

 Профиль  
                  
 
 Re: Изогнутый заряженный стержень
Сообщение10.05.2021, 07:21 
Заслуженный участник


21/09/15
998
realeugene в сообщении #1517715 писал(а):
Без интегралов - замечаем, что при смещении точки по биссектрисе, изменение потенциала связано только с участками на концах, которые становятся видны под другими углами. Что следует из интеграла в полярных координатах и постоянства линейной плотности заряда, но сам интеграл брать не нужно, достаточно подобия фигур.

Я не совсем вас понял. Я вижу два действия. Первое - пропорционально увеличить размеры конструкции, оставляя неизменной линейную плотность заряда.
При этом точка наблюдения сдвинется на $\Delta r$, $l$ увеличится на $\Delta l=\Delta r l/r$, потенциал в точке наблюдения очевидно не изменится.
Второе действие - убрать $\Delta l$, вычесть потенциал от них. Это сразу дает ответ (после деления на $\Delta r$ - напряженность), учитывая, что при малом $r$ расстояние от точки наблюдения до концов отрезков приблизительно $l$ (можно и точную формулу для этого расстояния взять).
Вы такое решение имели в виду? Если так, то что может быть проще?
Кстати, при таком подходе и равенство напряженности на внутренней и внешней биссектрисе очевидно.

 Профиль  
                  
 
 Re: Изогнутый заряженный стержень
Сообщение10.05.2021, 11:47 


27/08/16
10195
AnatolyBa в сообщении #1517897 писал(а):
Если так, то что может быть проще?
Да. Вы к моим рассуждениям добавили последний шаг, после которого ответ стал совершенно очевиден, спасибо.

 Профиль  
                  
 
 Re: Изогнутый заряженный стержень
Сообщение12.05.2021, 22:17 


31/07/14
705
Я понял, но не врубился.

(Оффтоп)

Допустим, $\alpha = 0$. Тем самым попадаем в могучую тему о распределении заряда на проводящей игле. Он там распределяется равномерно. Т.е. $E_{\parallel}$ в сложенном стержне всюду, за исключением, видимо, его концов, равна нулю. Выходит, при малейшем разводе стержней напряжённость меняется скачком?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 13 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Ignatovich


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group