Без интегралов - замечаем, что при смещении точки по биссектрисе, изменение потенциала связано только с участками на концах, которые становятся видны под другими углами. Что следует из интеграла в полярных координатах и постоянства линейной плотности заряда, но сам интеграл брать не нужно, достаточно подобия фигур.
Я не совсем вас понял. Я вижу два действия. Первое - пропорционально увеличить размеры конструкции, оставляя неизменной линейную плотность заряда.
При этом точка наблюдения сдвинется на
,
увеличится на
, потенциал в точке наблюдения очевидно не изменится.
Второе действие - убрать
, вычесть потенциал от них. Это сразу дает ответ (после деления на
- напряженность), учитывая, что при малом
расстояние от точки наблюдения до концов отрезков приблизительно
(можно и точную формулу для этого расстояния взять).
Вы такое решение имели в виду? Если так, то что может быть проще?
Кстати, при таком подходе и равенство напряженности на внутренней и внешней биссектрисе очевидно.