(amon)
Спасибо Вам за добрые слова в мой адрес, и, конечно, за Ваши неизменно интересные познавательные комментарии на форуме - читаю их всегда с удовольствием. А "возвращения", скорее всего, не будет: я уже развращён прелестью лентяйского неучастия в публичных обсуждениях.
Просто эта тема "зацепила": когда-то давно я пытался подобным образом отвечать на вопросы о сверхпроводимости студентам-техникам. Но, похоже, здесь уровень подготовки ТС заметно превышает мои крайне скромные познания в теории, так что вряд ли смогу добавить что-либо толковое.
KamazДаже значительное изменение импульса всего конденсата как целого может ещё не означать разрушения сверхпроводящего состояния; пример: медленным изменением внешнего магнитного поля в эффекте Мейсснера вызывается просто соответствующее изменение тока конденсата, а не его затухание во времени. Соответствие между почти статическим распределением магнитного поля и распределением плотности тока (в сверхпроводящем теле на глубине проникновения) - то самое, которое даётся обычным уравнением Максвелла; для простоты пусть речь идёт о сверхпроводнике 1-го рода.
Моя попытка подробного пояснения относилась к словам в стартовом сообщении: "при рассеянии пары на фононе энергия пары может не измениться, а изменится ее импульс" и "В результате, выбивание пар из состояния с
в любое другое
должно приводить к релаксации сверхтекучего тока, т.е. к его затуханию, т.е. к отсутствию сверхпроводимости."
Если кратко, то в пояснении я говорил, что рассеяние одной конденсатной пары на фононе это то же самое, что возбуждение из конденсата фононом двух неспаренных электронов, и для этого энергия поглощаемого фонона должна быть не меньше
Ведут ли процессы рассеяния электронов на фононах к отсутствию сверхпроводимости - отдельный вопрос; действительно:
Когда сверхтекучий ток затухает? И родственный вопрос: когда сверхпроводящее состояние переходит в нормальное (т.е. полностью исчезает парная корреляция в распределении электронов по импульсам)? Ответ примерно такой: тогда, когда энергия сверхпроводящего состояния превысит энергию нормального состояния той же системы (правильнее вести речь о свободной энергии).
Например, увеличиваем магнитное поле при фиксированной очень низкой температуре (так что можно пренебречь наличием одночастичных возбуждений - неспаренных электронов). Плотность сверхтекучего тока возрастает (согласно уравнению Максвелла). Значит, увеличивается
так что вся "сфера Ферми", включая слой с куперовскими парами, съезжает в направлении
Поэтому освобождаются одноэлектронные состояния с импульсами в противоположном направлении. Поскольку эти состояния расположены ближе к началу координат в импульсном пространстве, то кин. энергия для них меньше. Значит, при переходе в такое состояние электрона из пары с большим импульсом получается выигрыш в кин.энергии, хотя и остаётся проигрыш порядка
из-за разрушения пары. Чем больше плотность сверхтекучего тока, тем больше указанный выигрыш в кин. энергии электрона при распаривании, и когда он превзойдёт проигрыш, распаривание станет энергетически выгодным. Отсюда видно, что возникают понятия критической плотности тока и критического магнитного поля.
Другой пример: увеличиваем температуру
(однако пусть
) при фиксированном внешнем магнитном поле (в том числе равном нулю в частном случае). Тепловые фононы, поглощаясь электронами конденсата, разрушают сколько-то пар, но идут и обратные процессы - образование пар с испусканием фононов. Тем самым, при каждой температуре
в тепловом равновесии имеем динамическое равновесие конденсата и одночастичного "газа": есть ненулевая концентрация нормальных электронов и ненулевая концентрация электронов в конденсате. Чем выше температура, тем больше нормальных электронов. И тем меньше конденсатных, поэтому тем
с большим импульсом с большей скоростью конденсат должен течь, чтобы плотность тока (на глубине проникновения, которая тоже зависит от температуры) соответствовала бы заданному магнитному полю у поверхности тела. Отсюда можно заметить, что критический ток и поле убывают с ростом температуры; они обращаются в ноль при
При критической
и более высокой температуре тепловыми фононами разрушены все куперовские пары.
По вычислениям с гамильтонианом электрон-фононного взаимодействия не возьмусь советовать (могу лишь высказать тривиальное предположение: вероятность перехода определяется не только матричным элементом, но и плотностью конечных состояний, а поскольку в плотности состояний одноэлектронных возбуждений сверхпроводника есть щель, то эта щель и даст "пороговость" вероятности для переходов с распариванием пар). Литературы на такую теор. тему должно быть много. В частности, вот навскидку попался вроде подробный обзор (наверное интересный) в старом УФН - там говорится о взаимодействии электронов и с тепловыми фононами и со звуком, есть формулы с результатами
преобразования:
Кинетические явления в сверхпроводниках, Б.Т. Гейликман, В.З. Кресин.