2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Решение загадки ВТФ:ядерные числа,треугольники BGA
Сообщение18.02.2020, 15:26 
Заслуженный участник
Аватара пользователя


23/07/05
17410
Москва
PhisicBGA в сообщении #1440289 писал(а):
А как же быть с нарушением симметрии по чётности у степеней?Ведь эффект не сохранения чётности в слабом взаимодействии - это из физики высоких энергий.А тут вдруг оказывается,что подобное - является свойством структурных чисел т.е. степеней.
Ложная аналогия, вызванная исключительно наличием одинаково звучащих слов.

 Профиль  
                  
 
 Re: Решение загадки ВТФ:ядерные числа,треугольники BGA
Сообщение19.02.2020, 13:53 


06/02/14
144
Someone писал(а):
Ложная аналогия, вызванная исключительно наличием одинаково звучащих слов.


Замечательно.Кто бы сомневался...А вот такое объяснение:что природа - едина,что в ней нет деления на физику и математику, и поэтому числа и отражают свойства,даже самые глубинные,реальных объектов - это как? Нет..?Уже устарело и не актуально?Да,как говорится,Пифагор нервно курит в сторонке...
Я мог бы привести ещё один пример такого единства,да боюсь ,что уважаемый binki окончательно решит,что я буду доказывать ВТФ с помощью квантовой теории.

 Профиль  
                  
 
 Re: Решение загадки ВТФ:ядерные числа,треугольники BGA
Сообщение19.02.2020, 14:24 
Заслуженный участник
Аватара пользователя


23/07/05
17410
Москва
PhisicBGA в сообщении #1440398 писал(а):
Я мог бы привести ещё один пример такого единства
А какой был первый?

 Профиль  
                  
 
 Re: Решение загадки ВТФ:ядерные числа,треугольники BGA
Сообщение19.02.2020, 20:36 


06/02/14
144
Someone писал(а):
А какой был первый?


Увы,но Вы проспали...

 Профиль  
                  
 
 Re: Решение загадки ВТФ:ядерные числа,треугольники BGA
Сообщение19.02.2020, 22:35 
Супермодератор
Аватара пользователя


09/05/12
22340
Кронштадт
 !  PhisicBGA, ответьте на заданный вопрос. До появления ответа воздержитесь от написания других сообщений на форуме.

 Профиль  
                  
 
 Re: Решение загадки ВТФ:ядерные числа,треугольники BGA
Сообщение13.01.2021, 22:30 


06/02/14
144
Someone писал(а):
Ложная аналогия, вызванная исключительно наличием одинаково звучащих слов.

PhisicBGA писал(а):
Я мог бы привести ещё один пример такого единства.

Someone писал(а):
А какой был первый?.


Уже первый беглый анализ треугольных структур степеней приводит к интересному результату, который даже невозможно представить при классическом понимании степеней - эффекту нарушения у них симметрии по чётности. Это свойство степеней столь неожиданно и невероятно для людей воспитанных в рамках классических представлений, что в него отказываются верить. Но факты-в данном случае, математические выражения для внутренних структур степеней - упрямая вещь. Они показывают, что треугольные структуры для степеней с чётным и не чётным показателем отличаются. Вот это отличие, этот эффект нарушения симметрии по чётности у степеней лежит в основе той загадки, над которой бьются математики уже несколько веков: почему для степеней с показателем кратным 4-м есть элементарное доказательство ВТФ методом "бесконечного спуска" , а для степеней с нечетными показателями этот метод не работает.

 Профиль  
                  
 
 Re: Решение загадки ВТФ:ядерные числа,треугольники BGA
Сообщение14.01.2021, 12:07 


13/05/16
118
PhisicBGA в сообщении #1500727 писал(а):
Но факты-в данном случае, математические выражения для внутренних структур степеней - упрямая вещь. Они показывают, что треугольные структуры для степеней с чётным и не чётным показателем отличаются. Вот это отличие, этот эффект нарушения симметрии по чётности у степеней лежит в основе той загадки, над которой бьются математики уже несколько веков: почему для степеней с показателем кратным 4-м есть элементарное доказательство ВТФ методом "бесконечного спуска" , а для степеней с нечетными показателями этот метод не работает.

Почему вы решили, что второе доказательство непременно должно использовать метод бесконечного спуска? Как по мне, так оно должно вообще не использовать теорию чисел, так как с позиции теории чисел ВТФ исходили уже вдоль и поперёк

 Профиль  
                  
 
 Re: Решение загадки ВТФ:ядерные числа,треугольники BGA
Сообщение14.01.2021, 13:26 
Заслуженный участник
Аватара пользователя


23/07/05
17410
Москва
PhisicBGA в сообщении #1439761 писал(а):
$$x^2^n=\sum_{k=1}^{n-2k}\displaystyle 2\binom{n-2k}{n}\begin{cases}1\\1+2^{n-2k}\\1+2^{n-2k}+3^{n-2k}\\-----\\--------\\1+2^{n-2k}+3^{n-2k}+4^{n-2k}+...+(x-1)^{n-2k}\end{cases}+x^2  $$
Ошибка в записи суммы. Переменная $k$ используется одновременно в двух разных смыслах. Не говоря уже о нестандартной записи того, что находится после знака суммирования (при отсутствии определения такой записи).

PhisicBGA в сообщении #1440463 писал(а):
Увы,но Вы проспали...
Если Вы имеете в виду сопоставление нарушения сохранения чётности в физике и ваше "нарушение симметрии по чётности", то это ложная аналогия, основанное исключительно на наличии общих слов в терминологии. К тому же мне непонятно, чего Вы так носитесь с этим "нарушением симметрии по чётности". Разве кто-нибудь утверждал, что она должна быть? Никто и никогда не утверждал, что чётные и нечётные числа должны обладать одинаковыми свойствами. Наоборот, прямо из определения следует, что их свойства различны.

PhisicBGA в сообщении #1500727 писал(а):
Это свойство степеней столь неожиданно и невероятно для людей воспитанных в рамках классических представлений, что в него отказываются верить.
Кто именно отказался?

PhisicBGA в сообщении #1500727 писал(а):
почему для степеней с показателем кратным 4-м есть элементарное доказательство ВТФ методом "бесконечного спуска" , а для степеней с нечетными показателями этот метод не работает.
Причина совершенно очевидная: существует элементарное доказательство ВТФ для четвёртой степени методом бесконечного спуска, придуманное ещё самим Ферма. А из утверждения ВТФ для четвёртой степени мгновенно следует это же утверждение для всех степеней с показателями, кратными $4$. Это настолько банально, что трудно понять, чему Вы удивляетесь.
Насколько я помню, для всех чётных степеней, бо́льших $2$, тоже существует элементарное доказательство, и у нас на форуме кто-то (Феликс Шмидель) об этом писал. Но я могу ошибаться.

 Профиль  
                  
 
 Re: Решение загадки ВТФ:ядерные числа,треугольники BGA
Сообщение14.01.2021, 21:11 


06/02/14
144
Antoshka писал(а):
Как по мне, так оно должно вообще не использовать теорию чисел, так как с позиции теории чисел ВТФ исходили уже вдоль и поперёк.


Так и я о том же! Классическая теория чисел полностью себя исчерпала в попытках найти полное доказательство ВТФ. Доказательство Уайлса нельзя назвать полным т.к. оно косвенное: он доказал гипотезу Таниямы-Шимуры для одного класса эллиптических кривых - полустабильных, а гипотетическая кривая Фрея, если она существует, как раз полустабильна. Поэтому из доказательства Уайлса следовала справедливость ВТФ. (Только не понимаю, почему не наоборот: из справедливости ВТФ следует невозможность существования эллиптической кривой Фрея и,следовательно,справедливость гипотезы Таниямы-Шимуры для полустабильных эллиптических функций).
Так что, вешать Великую теорему Ферма в красный угол и лишь иногда стряхивать с неё пыль, ещё рано. Из неё в математике, как и из таких удивительных явлений ,как постоянство скорости света, квантованности энергии и структурной модели атома в физике, обязательно вырастет новая теория чисел. Такова неумолимая логика развития науки, таковы законы диалектики.
Давайте же посмотрим "достаточно ли безумна, что бы быть верной ",как говорил Бор, предложенная здесь квантовая теория степеней натуральных чисел. Зная внутреннюю структуру степеней - треугольники BGA плюс само натуральное число - мы можем теперь заглянуть внутрь степеней и попытаться понять, для начала, почему квадраты натуральных чисел составляют исключение и могут быть разложены на два целых квадрата. Для этого попробуем, например, воспроизвести равенство $5^2 =4^2+3^2$ в квантовом представлении этих квадратов:$$5^2=2\begin{cases}1\\1+1\\1+1+1\\1+1+1+1 \end{cases}+5 $$
$$4^2=2\begin{cases}1\\1+1\\1+1+1\\ \end{cases}+4 $$
$$3^2=2\begin{cases}1\\1+1\\ \end{cases}+3 $$

Думаю ,что это не представит особого труда. Своими результатами и соображениями можно поделиться прямо здесь.

 Профиль  
                  
 
 Re: Решение загадки ВТФ:ядерные числа,треугольники BGA
Сообщение16.01.2021, 11:28 


13/05/16
118
Someone в сообщении #1500823 писал(а):
Насколько я помню, для всех чётных степеней, бо́льших $2$, тоже существует элементарное доказательство, и у нас на форуме кто-то (Феликс Шмидель) об этом писал. Но я могу ошибаться.

Иан Стюарт в своей книге писал, что с четными степенями удалось разобраться Гаю Тержаняну во второй половине 20 века, так что насчёт элементарности доказательства не знаю

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 25 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group