Было бы интересно обсудить следующие вопросы, главным образом в отношении математики и физики:
1) Каким должен быть “идеальный учебник”?
2) Какие учебники наиболее близки к таковым?
Я погуглил, что пишут по поводу п.1 и нашел, например, такие ссылки:
https://cyberleninka.ru/article/n/otsen ... ury/viewer и
http://www.dslib.net/dokument-informaci ... lskoj.html Пытался понять, что там написано, но все что приходило в голову это цитата из Фейнмана:
Итак, я остановился - наугад - и прочитал следующее предложение очень внимательно. Я сейчас не помню его точно, но это было что-то вроде: "Индивидуальный член социального общества часто получает информацию через визуальные, символические каналы". Я долго с ним мучился, но все-таки перевел. Знаете что это означает? "Люди читают".
В общем, поиск мне не помог, поэтому приведу свою точку зрения (субъективную, неполную, не претендующую и т.д.). Предупреждая вопросы, заранее поясню, что
- Я не писал учебники и не читал лекции.
- Закончил физфак (теоретическая физика), но не занимался профессионально ни физикой, ни математикой.
- Интерес к этой теме и в целом к этому форуму вызван тем, что я до сих пор считаю математику и физику самыми интересными вещами в жизни, и в свободное время стараюсь вспоминать их или изучать что-то новое.
По этим причинам, вероятность того, что уровень содержательности и небанальности описанного мной выходит за пределы моего кругозора ниже того, что это не так. Тем не менее, возможно, кто-то сочтет это интересным и поделится своим мнением и примерами, за что я буду благодарен.
1) Каким должен быть “идеальный учебник”? Начать стоит с того, что идеальных учебников нет и быть не может :) Поэтому выше это выражение и берется в кавычки. Причин много, например
- У всех, кто изучает данный предмет есть свои цели, способности, обстоятельства, количество выделяемого времени и т.д.
- Любой учебник несет отпечаток личности и интересов его авторов.
- На каждый предмет можно смотреть с разных точек зрения, и все эти точки зрения могут быть по своему интересны и полезны.
- Любой раздел науки развивается со временем: появляются более понятные и простые объяснения, устанавливаются новые связи и приложения и т.д. Поэтому через какое-то время каждый учебник, хотя бы и частично, но устаревает.
Тем не менее, некоторые объективные признаки качества и полезности учебников, видимо, есть. Каковы они и что может улучшить это качество?
Сначала стоит определиться с тем, что именно понимается под “качеством учебника”. Здесь может быть много факторов, предложу такие:
1. "Корректность”: отсутствие грубых ошибок и некорректных доказательств.
2. “Общий научный уровень”: профессиональное изложение; это сложнее формально определить, но этот фактор, как и первый, мы далее не рассматриваем.
3. “Полнота”: включение наиболее важных и полезных понятий из темы заявленной в названии и содержании.
4. “Усваиваемость”: возможность для целевой аудитории учебника изучить и понять его в разумные сроки, т.е. нечто, что обычно называется “понятностью” и “прозрачностью” изложения.
5. “Интересность”: захватывающее изложение, повышение мотивации, развитие интереса к данному предмету и к данному разделу науки в целом.
6. “Практичность”: связность материала учебника с другими актуальными разделами, включая способность с пользой применять усвоенные понятия для дальнейшего обучения.
7. “Независимость”: способность усваивать материал при самостоятельном изучении.
Как оценивать и улучшать "Корректность” и “Общий научный уровень” обсуждать особого смысла не имеет. Или автор знает свой предмет, а значит может излагать его, как минимум, корректно и профессионально, или нет. Но как улучшать остальные пункты с точки зрения читателя? Перечислю то, что, как мне кажется, улучшило бы для них некоторые учебники.
Общие факторы1. Изложение должно быть достаточно замкнутым. Конечно, у любого учебника будут пререквизиты. Но часто полезно, когда (если это не приводит к чрезмерному разрастанию объема книги и потере фокуса):
- Есть вступительные главы с кратким изложением пререквизитов.
- Новые понятия определяются.
- Теоремы доказываются.
и т.д.
2. Явно обозначается какие разделы, понятия и теоремы являются принципиальными для данного курса, а какие можно пропустить при первом чтении. Последнее может зависеть от интересов читателя, что в этом случае стоит оговорить и предложить разные варианты “важности” и “неважности” в рамках данного учебника и целей читателя.
3. Присутствует схема зависимости глав.
4. В списке рекомендованной литературы даются краткие пояснения чем именно каждый из других рекомендуемых учебников (пособий, задачников и т.д.) может быть интересен и полезен как дополнение к данному учебнику. Это особенно редко встречается. Возможно, из-за профессионального этикета авторы учебников стараются не высказывать мнения о других учебниках. Но всегда когда я это встречал - это было и интересно, и полезно.
5. Есть не просто отдельный учебник, а курс учебников от данной группы авторов, объединенные общими определениями, подходом и логикой изложения. Это редкий случай, вне зависимости от всех других факторов, поэтому его лучше не учитывать.
Введение новых понятий1. Понятия не просто определяются (непонятно зачем и почему именно так), а приводится достаточно много мотивировок, объясняющих для чего это полезно, логично или просто интересно. При этом часто полезно, когда определение сначала неформальное, а после некоего обсуждения, когда читатель уже психологически привык, что сейчас будет что-то полезное, приводится уже полная и строгая формулировка.
2. Обсуждается почему определение именно такое и что изменится если что-то в нем поменять или обобщить. Например, если вводится понятие группы, то как будет называться это объект если убрать наличие единичного элемента (т.е. совсем нет понятия обратных элементов), и как он будет называться если единичный элемент есть, но убрать наличие обратного для каждого элемента (т.е. обратные есть, но не всегда). Для векторных пространств - сказать хотя бы пару слов о модулях над кольцами и привести пример абелевой группы. Для электромагнитного поля с абелевой калибровочной группой - сказать, что бывают и неабелевы калибровочные поля.
Не обязательно при этом углубляться в свойства объектов, которые определяются иначе или более общим образом. Но всегда что-то становится понятнее и интереснее, если посмотреть на это чуть сверху. Также это будет стимулировать продолжать изучение, поскольку впереди будут еще более интересные объекты.
3. Приводятся примеры как новое понятие проявляет себя в разных ситуациях. Для тех же групп – много примеров разных групп: группа преобразований (заодно можно сказать, что это универсальный пример группы), группа перестановок, целые числа по сложению и т.д.
4. С какими другими понятиями в математике это связано и в чем проявляется эта связь. Это можно рассказывать не сразу, а чуть позже, когда читатель лучше освоится с новым понятием. Но совсем пропускать это плохо, иначе у него не будет устанавливаться достаточно количества ассоциативных связей.
5. Для математических понятий также полезными будут примеры их проявления в физике или в целом в реальном мире вокруг нас. Например, снова на примере групп, рассказать про симметрии объектов вокруг нас. Для классов вычетов - напомнить про четные/нечетные числа, часы, дни недели и месяцы. И даже для простых множеств можно приводить много интересных практических иллюстраций для отношений эквивалентности и фактор множеств.
6. Как это понятие возникло исторически, кто его ввел, почему, какие были ранние версии этого понятия. Это опционально, не всегда имеет смысл углубляться в историю, но иногда может быть полезно.
Аналогично всему этому, для изучения новых слов в иностранном языке очень полезно не просто пытаться запомнить определения, но также понимать
- Как это слово употребляется в предложениях.
- Какие у него могут быть оттенки, синонимы и антонимы.
- Как оно может меняться в комбинации с каким-то приставками или другими словами.
- (опционально) Как это слово появилось исторически.
В математике, помимо всего этого, есть очень большие плюсы в том, что для новых понятий есть не только определения и примеры, но также теоремы и задачи, которые позволяют усваивать их значительно лучше. Но это в следующих пунктах.
Теоремы и доказательства1. Аналогично как и при введении новых понятий, для теорем тоже полезно объяснять:
- Мотивировки.
- Что изменится если поменять какие-то из условий в теореме. Например, что именно в условии наиболее существенно. При каких более мягких условиях может быть верно более мягкое условие теоремы (и наоборот). Для более продвинутых читателей, каким будет аналог этого утверждения в других категориях.
2. Доказательства должны быть строгими и аккуратными, но без увлечения “точными расчетами эпсилон” и подобными вещами, которые или вообще не играют роли, или и так очевидны. Этот пункт довольно сложно определить формально, но часто бывает что доказательство искусственно удлиняется до таких размеров, что становится запутанным и непонятным.
3. В теоремах (особенно достаточно длинных и сложных, но ИМХО вообще в любых) полезно начинать с того, в чем основная идея того, почему это верно. Это то, что останется после того, как все детали забудутся или когда они вообще не особо важны. И это то, что будет создавать ассоциативные связи в мозгу с другими понятиями и теоремами. Конечно, это не исключает того, что читатель должен стараться догадаться до основной идеи еще до прочтения доказательства.
4. Всегда приводить несколько разных доказательств теоремы, когда они существуют. Например, некоторые доказательства могут быть короче и требовать меньше пререквизитов, но при этом не помогают понять “почему” это верно. А именно это “почему” и есть самое важное. Как для того, чтобы потом помнить как это доказывается, так, что еще важнее, для связей этой теоремы и метода доказательства с другими понятиями и доказательствами.
Задачи1. Конечно, есть и всегда будут нужны задачники, но полезно включать значительный набор задач и в сами учебники. Иногда это делается, но, к сожалению, не всегда к задачам есть решения. А последнее очень важно, особенно при самостоятельном изучении.
2. Отсутствие решений к задачам может быть особенно затруднительным в тех случаях, когда в дальнейшем изложении в учебнике какие-то из задач являются основой для последующих понятий и теорем.
Иллюстрации и общее оформление1. Речь идет не (только) о картинках или фигурах (они тоже полезны, но не всегда уместны), а (также) о добавлении графических деталей к текстовому и формальному изложению. Вне зависимости от того нравится ли больше читателю “алгебра”, “геометрия” или “анализ” мышление всегда образное. Примерами помогающими лучше представить и освоить новые понятия могут быть блок-схемы, коммутативные диаграммы, кружки множеств, стрелки между множествами и т.д.
2. К этому же относятся иллюстрации зависимости между понятиями и теоремами. Мне всегда казалось странным, почему в учебниках обычно пренебрегают возможностями иллюстративно показать какие логические элементы используются в новых понятиях, где еще они использовались, какими идеями связаны теоремы и т.д.
Помню, что когда учил алгебру и матанализ, то сначала все доказательства были очень простыми, поскольку известных для читателя к тому моменту изложения фактов и идей было очень мало. В алгебре сначала были только ассоциативность, наличие обратного элемента, линейность и простые факты из теории чисел типа деления с остатком. В матанализе - факты типа наличия точной грани у ограниченного непустого множества. Со временем количество фактов (т.е. доказанных к тому времени теорем) становилось больше. Но на любой стадии было полезно выявлять для себя какие основные понятия и факты здесь используются, и благодаря этому логичнее подниматься по лестнице новых понятий и доказательств.
3. Общее оформление также играет немалую роль. Сложно читать тексты, которые выглядят однообразно в виде набора параграфов и их номеров. Есть много способов форматирования, которые делают текст приятнее и понятнее для читателя: таблицы, колонки, выноски, размер шрифта и т.д.
ВозраженияЭто все не только было субъективно, но я и сам здесь вижу ряд проблем. Поэтому приведу некоторые возможные возражения и ответы.
- Учебники обычно предназначены в качестве вспомогательных пособий к лекциям и семинарам. Ответы на вопросы, неформальные объяснения, мотивации, дополнительные примеры и прочее можно получать от последних.
- Разумеется так было бы лучше. Но далеко не у всех есть возможность сочетать учебники с лекциями, семинарами и общением с наставниками и единомышленниками.
- Нужно давать читателям возможность самим открывать главные идеи. Так они будут лучше усваиваться, аналогично тому как лучше запоминаешь дорогу в новом городе если идешь по ней сам, а не за кем-то.
- В идеале - несомненно. Но это все же подразумевает наличие наставников (“путеводителей”), с которыми можно будет советоваться если заблудишься. Кроме того, всегда можно пройти по той же дороге еще раз, но уже более сознательно и продуманно, восстанавливая ее в воображении самому и не перечитывая карту.
- Ученики должны есть твердую пищу и пережевывать ее сами. Так она будет усваиваться лучше, чем разжеванная каша.
- И здесь тоже, в идеальном мире - да. Но, опять же, 1) далеко не у всех есть возможность спрашивать вопросы у преподавателей и советоваться с сокурсниками, 2) ничего не мешает стараться все сначала доказывать и решать самим, и только потом читать пять разных способов доказательств и решения задач, и 3) не всегда все можно усвоить сразу, повторение - мать учения.
- Если следовать всем этим рекомендациям, учебники будут разрастаться до нечитаемых и скучных размеров.
- Это, наверное, самый сильный аргумент. Могу ответить только то, что хорошие толстые и подробные учебники (но конечно, толстые и подробные в меру) обычно читаются и понимаются быстрее тонких и лаконичных. Бывают и исключения, как и из всех правил. Например, этот пост уже могло стать скучно читать к данному моменту :) Но в целом, все это не обязательно требует значительного увеличения размеров учебников. Часто наоборот, лаконичность бывает понятнее.