2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Много точных квадратов
Сообщение11.10.2020, 20:25 
Заслуженный участник


20/12/10
9145
Найдите а) хотя бы два, б) все значения целочисленного параметра $H$ в промежутке $[1,10^6]$, для каждого из которых существует более двух десятков целых значений $y$, для которых число $y^4+2Hy$ является точным квадратом.

 Профиль  
                  
 
 Re: Много точных квадратов
Сообщение11.10.2020, 22:06 


16/08/05
1153
$y^4+2Hy=z^2\implies (y^3 + H)^2 - (yz)^2 = H^2$

а)
Код:
H = 295680; #T = 20
[[-385, 147455], [-160, 23680], [-140, 17360], [-110, 9020], [-108, 8496], [-88, 2816], [-84, 336], [1, 769], [6, 1884], [8, 2176], [14, 2884], [28, 4144], [40, 5120], [44, 5456], [60, 6960], [96, 11904], [132, 19536], [154, 25564], [297, 89199], [384, 148224]]

H = 997920; #T = 20
[[-448, 198464], [-240, 53280], [-210, 39060], [-165, 20295], [-162, 19116], [-132, 6336], [-126, 756], [9, 4239], [12, 4896], [21, 6489], [22, 6644], [42, 9324], [60, 11520], [66, 12276], [90, 15660], [140, 25760], [144, 26784], [198, 43956], [231, 57519], [576, 333504]]

б)
таких нет

(gp-код)

Код:
nno()=
{
for(H=1, 10^6,
  T= thue('x^2-1, H^2);
  T= select(S -> S[1]-H!=0 & ispower(S[1]-H,3), T);
  T= apply(S -> [sign(S[1]-H)*floor(abs(S[1]-H)^(1/3)), S[2]], T);
  T= apply(S -> [S[1], S[2]/S[1]], T);
  T= select(S -> S[2]>0, T);
  T= select(S -> #T>19, T);
  if(#T,
   print("\nH = "H"; #T = "#T"\n"T);
   write("nno.txt","\nH = "H"; #T = "#T"\n"T)
  )
)
};

 Профиль  
                  
 
 Re: Много точных квадратов
Сообщение11.10.2020, 22:19 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
Например так:
$y=p-q$
$H=2pq(p-q).$ Таких отображений много найдется до миллиона. Для $H=480$ к примеру $(p,q)=(10,4),(10,6),(12,2),(12,10),(16,1),(16,15).$

Upd 13.10.2020
В силу симметрии годятся также $y_2=q, y_3=-p$ (предполагается $p>q>0$). Если домножить $p,q$ на некоторый коэффициент $k$, то для $H'=Hk^3$ подходят пропорциональные $y'_1=k(p-q),y'_2=kq,y'_3=-kp,$ но могут добавиться и другие решения. Для $H=60=2 \cdot 5 \cdot 3 \cdot (5-3)=2 \cdot 6 \cdot 5 \cdot (6-5),$ к примеру, годятся $6$ вариантов $y:\ 2,3,-5,1,5,-6.$ Домножая на $k=2,$ получаем еще тройку $1,30,-31$ для $H=480.$ Домножая на $k=3,$ — еще тройку $1,80,-81.$
Для $H=12960$ имеем уже $12$ вариантов $y: 1,3,6,12,18,30,45,80,-30,-36,-48,-81.$ Где гарантия, что такой процесс конечен? $k=28$ и $k=11$ последовательно добавляют еще две тройки, хотя это уже за пределами $H \sim 10^6.$

 Профиль  
                  
 
 Re: Много точных квадратов
Сообщение12.10.2020, 02:54 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
$3$ х-параметрическое $y=(p-q)r$, $H=2pq(p-q)r^3$ можно поставить в зависимость от уравнения в рациональных числах $\dfrac{X^2-1}{Y^2-1}=Z^3$ (об этом молчу). Если верно последнее, то из несократимых дробей $\dfrac{p_1}{q_1}=\dfrac{X+1}{2},\dfrac{p_2}{q_2}=\dfrac{Y+1}{2},\dfrac{r_1}{r_2}=\dfrac{q_2}{q_1Z}$ получаем $H$ и нужную пару $y$.

Примеры:

$X=8/1,Y=25/7,Z=7/4;p_1=9,q_1=2,$ $p_2=16,q_2=7,r_1=2,r_2=1;H=2016,y_1=14,y_2=9.$

$X=949/5,Y=3107/20,Z=8/7;p_1=477,q_1=5,$ $p_2=3127,q_2=40,r_1=7,r_2=1;H=772243920
,y_1=3304,y_2=3087.$

Изменено 13.10.2020

 Профиль  
                  
 
 Re: Много точных квадратов
Сообщение12.10.2020, 14:15 
Заслуженный участник


20/12/10
9145
dmd
Это очень удачно получилось, что уравнение оказалось возможным переписать в виде $(y^3+H)^2-(yz)^2=H^2$, после чего дальше можно раскручивать по-разному (например, левую часть можно факторизовать или, наконец, вспомнить про пифагоровы тройки). Вы можете пояснить, как именно возникает здесь уравнение Туэ (например, явно выписать это уравнение Туэ)? Что-то я это плохо представляю.

Я, конечно, ничего подобного не имел в виду, в моем решении используется совершенно элементарный и другой алгоритм. Верно ли, что для схожего уравнения $y^4+2Hy+1=z^2$ подобный трюк (сведение к уравнению Туэ) невозможен?

Да, ответы к а) и б) верные (иными словами, существуют ровно два искомых значения $H$ --- те, которые Вы указали). Но обоснование корректности ответа в б) через уравнения Туэ --- это слишком дорогое удовольствие (в том плане, что надо еще понять, насколько корректно реализовано решение таких уравнений в pari/gp).

Upd. Вопрос с уравнением Туэ снят (оно здесь простейшее: разность квадратов равна константе). Таким образом, с корректностью все в порядке.

 Профиль  
                  
 
 Re: Много точных квадратов
Сообщение12.10.2020, 15:52 


16/08/05
1153
Это просто в pari/gp так придумано, что разность квадратов и уравнение $x^2+dy^2=c,d>0,c>0$ можно решать функцией thue, хотя они конечно же не чистокровные Туэ, которые формально с 3-й степени начинаются.


nnosipov в сообщении #1486819 писал(а):
Верно ли, что для схожего уравнения $y^4+2Hy+1=z^2$ подобный трюк (сведение к уравнению Туэ) невозможен?

Для меня пока не факт, сам постоянно в поиске вариантов сведения эллиптических/гиперэллиптических уравнений к конечному набору Пелля/Туэ. Такое уравнение логичнее решать функцией IntegralQuarticPoints из Магмы. Только наверняка на некоторых наборах коэффициентов Магма будет безнадёжно зависать, что означает что потенциальные решения могут быть огромны и Магма до них не может за разумное время добраться.
Также его можно свести к "два квадрата минус квадрат"
$(2 y^2 - 1)^2 + (2 (y + H))^2 - (2 z)^2 = 4 H^2 - 3$
или к "двум разностям квадратов"
$-(2 y^2 - 1)^2 - (2 (y + H))^2 + (2 z)^2 + (2 H)^2 = 3$
и пытаться их раскрутить через частные варианты параметризации (типа этих: 1,2).

 Профиль  
                  
 
 Re: Много точных квадратов
Сообщение12.10.2020, 17:30 


30/09/20
78
dmd, сколько примерно времени занимает выполнение вашего кода? Я запустил nno(), процессор уже восьмую минуту гудит.

 Профиль  
                  
 
 Re: Много точных квадратов
Сообщение12.10.2020, 17:58 


16/08/05
1153
Verkhovtsev
Примерно пол-часа заняло.

 Профиль  
                  
 
 Re: Много точных квадратов
Сообщение12.10.2020, 18:02 
Заслуженный участник


20/12/10
9145
dmd
А процессор? У меня i7 работал по моему алгоритму минут 70.

 Профиль  
                  
 
 Re: Много точных квадратов
Сообщение12.10.2020, 18:23 


16/08/05
1153
nnosipov
i5-6400

 Профиль  
                  
 
 Re: Много точных квадратов
Сообщение12.10.2020, 18:39 
Заслуженный участник


20/12/10
9145
Хорошо, давайте теперь займемся выражением $y^4+2Hy+1$. Будем искать такие $H \in [1,10^6]$, для которых уравнение $y^4+2Hy+1=z^2$ имеет максимальное число решений.

 Профиль  
                  
 
 Re: Много точных квадратов
Сообщение13.10.2020, 06:26 
Заслуженный участник


20/12/10
9145
dmd в сообщении #1486829 писал(а):
Такое уравнение логичнее решать функцией IntegralQuarticPoints
из Магмы. Только наверняка на некоторых наборах коэффициентов Магма будет безнадёжно зависать, что означает что потенциальные решения могут быть огромны и Магма до них не может за разумное время добраться.
Вот это было бы любопытно проверить. Оценить возможные решения в данном случае нетрудно.

 Профиль  
                  
 
 Re: Много точных квадратов
Сообщение13.10.2020, 07:11 


16/08/05
1153
Увы, Магма вне игры. Зависла уже на H=13.

 Профиль  
                  
 
 Re: Много точных квадратов
Сообщение13.10.2020, 07:55 
Заслуженный участник


20/12/10
9145
dmd
Большое спасибо (уже не в первый раз выручаете меня в подобных делах). Вчера запустил на своем новеньком ноутбуке: все те же 72 минуты (Maple, i7-9750H). Максимальное число решений: 10 (достигается при 2 значениях $H$). Здесь ожидаемо число решений не слишком велико.

Алгоритм абсолютно элементарный, для школьников. Подобные штуки мы на самом деле уже обсуждали. Но, как это обычно бывает, не исключен и какой-нибудь "левый" способ (как в начальном варианте задачи, где такой способ не только оказался эффективнее, но и заодно прояснил, почему возможно довольно большое число решений).

 Профиль  
                  
 
 Re: Много точных квадратов
Сообщение14.10.2020, 16:11 


16/08/05
1153
Ничего интересного не придумалось, просто перебором прошел.

Код:
H = 53684; #T = 10
[[-53684, 2881971855], [-84, 6385], [0, 1], [8, 929], [10, 1041], [20, 1519], [64, 4863], [66, 5105], [416, 173185], [53684, 2881971857]]

H = 95281; #T = 10
[[-95281, 9078468960], [-1148, 1317821], [-80, 5071], [0, 1], [7, 1156], [40, 3191], [60, 4939], [76, 6917], [657, 431794], [95281, 9078468962]]

nnosipov
И Вам спасибо за красивые задачи!
Выходит что $|y|$ не может быть больше $H$, но почему? И, пожалуйста, потом расскажите Ваш алгоритм (интересно пересмотреть, что же я не увидел или забыл). Количество решений ограничено, ну не может не быть, чтоб такое уравнение не сводилось к настоящему Туэ или к разности квадратов.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 27 ]  На страницу 1, 2  След.

Модераторы: Karan, Toucan, PAV, maxal, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: gris


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group