2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Лягушка и коробка
Сообщение01.10.2020, 18:23 
Аватара пользователя
В однородном гравитационном поле, с ускорением свободного падения $g$, жил-был Стол. На Столе располагались Лягушка и, расположенная одной из сторон поперёк всего Стола, прямоугольная декартова Коробка. Высота у Коробки была $H$, долгота - $L$, а Лягушка на самом деле была заколдованной Принцессой. И чтобы расколдоваться, ей нужно было перепрыгнуть коробку стопиццот раз. Делать нечего, Лягушка скакала себе и скакала... А поскольку была она ленивой, то приноровилась скакать так, чтобы начальная её скорость была минимально возможной. Найдите эту скорость.

 
 
 
 Re: Лягушка и коробка
Сообщение01.10.2020, 18:33 
Утундрий
Стол бесконечный в перпендикулярном $L$ направлении?

 
 
 
 Re: Лягушка и коробка
Сообщение01.10.2020, 18:55 
Аватара пользователя
wrest
Какая разница? (Почти) очевидно, что коробку нужно перепрыгивать там, где она имеет меньший горизонтальный размер.

 
 
 
 Re: Лягушка и коробка
Сообщение01.10.2020, 19:37 
Кажется что ответ тут не простой, а очень простой.

(Возможный ответ)

Принимая стол бесконечным в перпендикудярном $L$ направлении, задача, как будто, сводится к минимальной скорости для преодоления дистанции $L$ по горизонтали, пусть она будет $v_0$ и добавки к ней при падении на стол.
Для нахождения искомой скорости, бросаем лягушку с края коробки (т.е. с высоты $H$) под $45$ градусов вниз. Скорость, с которой она столкнется со столом, пусть $v_1$ - и есть искомая.

$v_0=\sqrt{gL}$ (это скорость лягушки при касании ею угла коробки, направление -- $45^{\circ}$ к горизонту). Как там точно не помню, но вроде если скинуть лягушку с высоты $H$ над столом со скоростью $\sqrt{gL}$ вниз под углом $45^{\circ}$ к горизонту, то искомая скорость столкновения со столом будет $v_1=\sqrt{g(L+2H)}$

 
 
 
 Re: Лягушка и коробка
Сообщение01.10.2020, 19:48 
Аватара пользователя
Ответ совпадает с авторским.

 
 
 
 Re: Лягушка и коробка
Сообщение01.10.2020, 20:04 

(EUgeneUS)

EUgeneUS в сообщении #1485390 писал(а):
Какая разница? (Почти) очевидно, что коробку нужно перепрыгивать там, где она имеет меньший горизонтальный размер.
Да не, эт плоская задача. Коробка размером HxL (и в третьем направлении бесконечная либо в размер стола, т.е. на кривой козе не объехать, надо прыгать поперек) просто стола может не хватить с какой-то из сторон коробки при минимальной скорости когда стол бесконечный, тогда появляются варианты. Если бы вместо Стола был Пол, то вопроса бы не было, т.к. пол всегда подразумевается бесконечным, если не сказано другое.

 
 
 
 Re: Лягушка и коробка
Сообщение02.10.2020, 08:27 
Задача 1.3.19 из задачника Савченко :wink:

 
 
 
 Re: Лягушка и коробка
Сообщение03.10.2020, 09:55 
Кстати, можно доказать, что если профиль "коробки" косоугольный, с наклонной крышкой той же длины $L$,
и с высотой своей середины $H$, то минимум энергии, затрачиваемый лягушкой на единицу своей массы
на два прыжка, туда и обратно, равен$$\varepsilon=g(L+2H)$$ То есть по форме ответ остаётся тем же.

 
 
 
 Re: Лягушка и коробка
Сообщение03.10.2020, 11:23 
dovlato в сообщении #1485562 писал(а):
Последний раз редактировалось dovlato
03.10.2020, 10:16, всего редактировалось 7 раз(а).


Кстати, можно доказать, что если профиль "коробки" косоугольный, с наклонной крышкой той же длины $L$,
и с высотой своей середины $H$, то минимум энергии, затрачиваемый лягушкой на единицу своей массы
на два прыжка, туда и обратно, равен$$\varepsilon=g(L+2H)$$





Интересно! Dovlato, подскажите, пожалуйста, есть простой вывод этой простой формулы? Я вижу только довольно длинный путь: рассмотреть стартовую точку у угла коробки, минимизировать начальную скорость в зависимости от угла, вычислить энергию при броске с земли.

 
 
 
 Re: Лягушка и коробка
Сообщение03.10.2020, 12:37 
Нашел и короткий путь решения. Задача мне очень понравилась! А ответ простотой поражает.

 
 
 
 Re: Лягушка и коробка
Сообщение03.10.2020, 20:58 
Здесь можно опереться на другую задачу, которая здесь некогда уже обсуждалась:
минимум начальной скорости, необходимый, чтобы попасть в точку, удалённую от
начальной точки на $R$, и с вертикальной координатой $y$, удовлетворяет уравнению$$V^2_0=g(R+y)$$

 
 
 
 Re: Лягушка и коробка
Сообщение04.10.2020, 14:58 
А я вспомнил известную задачу о "зоне обстрела", ограниченную параболоидом:
$y=(\upsilon^2 /2g)-(g/2\upsilon^2)x^2$
Из него получил записанное вами уравнение
$\upsilon^2=g(R+y)$

 
 
 [ Сообщений: 12 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group