Дано метрическое пространство
, где
- это множество непрерывных на
функций. Нужно выяснить, является ли оно полным (банаховым).
Пространство является полным по определению, если в нем любая фундаментальная последовательность имеет предел, который принадлежит этому пространству.
Перед созданием этой темы прочитал все предыдущие, связанные с доказательством полноты, но, если честно, пока не уловил общую идею.
Насколько я понял, в случае, когда в качестве множества берется
или
, которые являются заведомо полными, можно доказать полноту сведением нашей нормы к обычной норме, т.е. если последовательность фундаментальна относительно нашей нормы и удалось показать, что эта же последовательность фундаментальна относительно обычной нормы, значит, что пространство полное (как тогда быть, если это показать не удалось и пространство на самом деле не полное?..).
В этом же случае, когда множество нестандартное, я теряюсь, как можно доказать, что любая фундаментальная последовательность будет сходится (или показать обратное).
Буду очень благодарен за помощь, трудновато постигать это на дистанционке самому. Хочу разобраться с идеей доказательства, общей схемой.