Ха, я тут ввожу значит в Mathematica 8 следующее:
Код:
Clear[u, eqs, vars]
vars = Flatten[{#[x], #[y]} & /@ {a, b, c, d, e, f}, 1];
u[p1_, p2_, dist_] := (p1[x] - p2[x])^2 + (p1[y] - p2[y])^2 == dist^2
eqs = {
a[x] == a[y] == b[y] == 0, d[y] > 0, e[y] > 0, f[y] > 0,
u[a, d, 0.611], u[a, e, 1.02], u[a, f, 1.519],
u[b, d, 0.899], u[b, e, 0.839], u[b, f, 1.116],
u[c, d, 1.314], u[c, e, 0.994], u[c, f, 0.967]};
NSolve[eqs, vars, Reals]
так она мало что говорит удивительное «NSolve::ratnz: NSolve was unable to solve the system with inexact coefficients. The answer was obtained
by solving a corresponding exact system and numericizing the result», она ещё и за несколько секунд десять решений выдаёт, а не четыре:
Код:
{{a[x] -> 0, a[y] -> 0, b[x] -> -1.51, b[y] -> 0, c[x] -> -1.85419, c[y] -> 0.42717, d[x] -> -0.610998, d[y] -> 0.00164224, e[x] -> -0.866415, e[y] -> 0.538261, f[x] -> -1.10662, f[y] -> 1.04055},
{a[x] -> 0, a[y] -> 0, b[x] -> -1.50998, b[y] -> 0, c[x] -> -0.159876, c[y] -> 1.23744, d[x] -> -0.610991, d[y] -> 0.00330744, e[x] -> -0.86641, e[y] -> 0.538268, f[x] -> -1.10662, f[y] -> 1.04055},
{a[x] -> 0, a[y] -> 0, b[x] -> -0.701992, b[y] -> 0, c[x] -> -0.542132, c[y] -> 1.82439, d[x] -> -0.0412486, d[y] -> 0.609606, e[x] -> -0.590656, e[y] -> 0.83158, f[x] -> -1.10735, f[y] -> 1.03978},
{a[x] -> 0, a[y] -> 0, b[x] -> -0.683779, b[y] -> 0, c[x] -> -1.21986, c[y] -> 0.0662356, d[x] -> -0.023892, d[y] -> 0.610533, e[x] -> -0.587933, e[y] -> 0.833507, f[x] -> -1.11839, f[y] -> 1.0279},
{a[x] -> 0, a[y] -> 0, b[x] -> -0.627794, b[y] -> 0, c[x] -> -1.13871, c[y] -> 0.0143458, d[x] -> 0.0324591, d[y] -> 0.610137, e[x] -> -0.581882, e[y] -> 0.837743, f[x] -> -1.15964, f[y] -> 0.981119},
{a[x] -> 0, a[y] -> 0, b[x] -> 0.627794, b[y] -> 0, c[x] -> 1.13871, c[y] -> 0.0143458, d[x] -> -0.0324591, d[y] -> 0.610137, e[x] -> 0.581882, e[y] -> 0.837743, f[x] -> 1.15964, f[y] -> 0.981119},
{a[x] -> 0, a[y] -> 0, b[x] -> 0.683779, b[y] -> 0, c[x] -> 1.21986, c[y] -> 0.0662356, d[x] -> 0.023892, d[y] -> 0.610533, e[x] -> 0.587933, e[y] -> 0.833507, f[x] -> 1.11839, f[y] -> 1.0279},
{a[x] -> 0, a[y] -> 0, b[x] -> 0.701992, b[y] -> 0, c[x] -> 0.542132, c[y] -> 1.82439, d[x] -> 0.0412486, d[y] -> 0.609606, e[x] -> 0.590656, e[y] -> 0.83158, f[x] -> 1.10735, f[y] -> 1.03978},
{a[x] -> 0, a[y] -> 0, b[x] -> 1.50998, b[y] -> 0, c[x] -> 0.159876, c[y] -> 1.23744, d[x] -> 0.610991, d[y] -> 0.00330744, e[x] -> 0.86641, e[y] -> 0.538268, f[x] -> 1.10662, f[y] -> 1.04055},
{a[x] -> 0, a[y] -> 0, b[x] -> 1.51, b[y] -> 0, c[x] -> 1.85419, c[y] -> 0.42717, d[x] -> 0.610998, d[y] -> 0.00164224, e[x] -> 0.866415, e[y] -> 0.538261, f[x] -> 1.10662, f[y] -> 1.04055}}
Впрочем, наверно некоторые из них отличаются просто переименованием точек, тут мне уже лень что-то делать.
P. S. Притом the corresponding exact system — это точно не та, что получится, если заменить численные расстояния на переменные. Интересно, к какой же системе она там приходит…