2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 О замене переменной в задачах школьной математики
Сообщение31.03.2020, 01:02 
Заслуженный участник
Аватара пользователя


18/09/14
5512
Тема создана в ответ на сообщение:
Munin в сообщении #1447872 писал(а):
Ещё меня беспокоит тема, как научить школьников для своего удобства делать замену переменной, и как её выбирать. Тоже неформальный момент, "искусство".

Предполагаю вернуться к этой теме ещё несколько раз. Впрочем, если коллеги сочтут тему слишком банальной, утомлять никого не стану.
Приглашаю поучаствовать в разговоре всех желающих. Особенно приветствую желание поделиться личным опытом со стороны реальных репетиторов.
Единственная просьба: ограничиться школьной математикой или материалом, потенциально понятным школьнику.

Построить систематический набор правил "на все случаи жизни", конечно, я не берусь. Согласен с Munin: замена переменной - это в чём-то искусство. А искусству научить едва ли возможно, скорее, можно помочь ему научиться. Здесь практически полезнее не утомлять слушателя длинными рассуждениями, а учить своим примером (в стиле "делай как я"). Вот для начала две маленькие хитрости.

1. Квадратные уравнения. Хитрость номер 1. Целый ряд задач школьной математики сводится (на каком-то этапе) к решению квадратного уравнения. Вещь сама по себе простая, но... случается так, что входящие в уравнение параметры относительно велики. Поскольку на экзамене по математике пользоваться калькулятором запрещено, именно в этом месте запросто можно споткнуться: ошибиться при вычислении дискриминанта или "всего лишь" потратить неоправданно много времени на поиск квадратного корня из него. Чтобы избежать этих неприятностей, я своим ученикам рекомендую: не хватайтесь сразу решать квадратное уравнение, если оно "с большими коэффициентами". Посмотрите на него повнимательнее. Есть ли делители у параметра $b$? Есть? Отлично. Теперь посмотрите: не делится ли $c$ на квадрат какого-нибудь делителя $b$? Если да, вам повезло. Делайте подстановку $x=mt$, где $m$ - тот самый найденный делитель, и вы получите новое уравнение с существенно меньшими коэффициентами.

Пример: дано уравнение

$x^2-119x+2890=0$

Не будем торопиться считать его дискриминант. Посмотрим, на что делится $b$. Недолгий поиск даёт: $119=7\cdot17$. При этом очевидно, что $2890$ делится на $17^2$. Делаем подстановку: $x=17t$. Получаем:

$289t^2-119\cdot 17t+2890=0$

или, после деления на 289,

$t^2-7t+10=0$,

которое легко решается "в уме". Остаётся лишь не забыть вернуться к прежней переменной.
Может показаться, что здесь описана редкая ситуация, однако, это не так. В процессе занятий с разными школьниками этот приём мне приходилось демонстрировать многие десятки раз (на приносимых ими задачах). Тем, кто его усвоил, этот приём действительно поубавил рутины.

2. Квадратные уравнения. Хитрость номер 2. Здесь я хочу напомнить о том, что можно расширить применение теоремы Виета, с тем, чтобы и неприведённые квадратные уравнения относительно легко решались "в уме" (по крайней мере, иногда). Это достигается с помощью простой подстановки $x=\dfrac{c}{t}$, где $t$ - новая неизвестная. В результате этой подстановки получается уравнение $t^2+bt+ac=0$, которое нередко можно решить, не прикасаясь к бумаге.

Пример: дано уравнение

$6x^2-11x+4=0$

Составим вспомогательное уравнение, заменив букву $x$ буквой $t$ и перебросив старший коэффициент в "хвост" уравнения:

$t^2-11t+4\cdot6=0$

то бишь

$t^2-11t+24=0$

корни которого очевидны: $3$ и $8$.
Значит, корни исходного уравнения - числа $\dfrac{4}{3}$ и $\dfrac{4}{8}$, то бишь $\dfrac{4}{3}$ и $\dfrac{1}{2}$.

Просьба к тем, кто прочитал эти строчки, высказаться: имеет ли смысл продолжать? Или всё чересчур банально?

 Профиль  
                  
 
 Re: О замене переменной в задачах школьной математики
Сообщение31.03.2020, 01:25 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
Mihr в сообщении #1449725 писал(а):
Просьба к тем, кто прочитал эти строчки, высказаться: имеет ли смысл продолжать? Или всё чересчур банально?

Если это написано для меня, то можно не продолжать, если это написано для любознательного школьника, то продолжать стОит.

 Профиль  
                  
 
 Re: О замене переменной в задачах школьной математики
Сообщение31.03.2020, 02:42 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Mihr
Красивые приёмы! Для меня они совершенно не банальны, скорее неожиданны :-)

Но мне кажется, квадратное уравнение решить - это простейшая задача (если коэффициенты числовые).
Замена переменной гораздо чаще помогает выделить квадратное уравнение (или формулу сокращённого умножения) в сложной формуле.

 Профиль  
                  
 
 Re: О замене переменной в задачах школьной математики
Сообщение31.03.2020, 07:11 
Заслуженный участник
Аватара пользователя


18/09/14
5512
Brukvalub в сообщении #1449730 писал(а):
Если это написано для меня, то можно не продолжать, если это написано для любознательного школьника, то продолжать стОит.

Brukvalub, спасибо за ответ. Я совершенно не рассчитывал расширить чьё-то знание математики (тем паче, Ваше) :D Тема для репетиторов: на что обратить внимание? Ну, и, конечно, для школьников, если они читают этот форум.

Munin в сообщении #1449739 писал(а):
Замена переменной гораздо чаще помогает выделить квадратное уравнение (или формулу сокращённого умножения) в сложной формуле.

Об этом я тоже намерен поговорить. Чуть позже.

 Профиль  
                  
 
 Re: О замене переменной в задачах школьной математики
Сообщение01.04.2020, 23:34 
Заслуженный участник
Аватара пользователя


18/09/14
5512
По поводу замены переменной в уравнениях/неравенствах. Эта тема довольно обширна и освещена в специальных пособиях для школьников. Например, в книге Олехник С.Н., Потапов М.К., Пасиченко П.И. - Уравнения и неравенства. Нестандартные методы решения [2002, DjVu, RUS]. Уже в первой главе этого пособия наряду с другими методами разбирается метод замены переменной, демонстрируется его использование для решения симметрических и возвратных уравнений. А вся третья глава указанной книги посвящена методам замены переменной в тех или иных случаях. Так что для основательного знакомства с методом есть что порекомендовать школьнику.
Но вопрос был, как я его понял, скорее о том, как научить школьника самому видеть нужную замену переменной. Мой ответ на редкость банален: школьнику «всего лишь» нужен соответствующий опыт. А накопить его можно лишь соответствующей практикой. Как говорят в подобных случаях, чтобы научиться плавать, нужно для начала войти в воду и попробовать плыть. Так и здесь: чтобы овладеть техникой замены переменной, нужно пытаться решать соответствующие задачи. Иначе — никак, по-моему.
От репетитора же требуется, как мне кажется, прежде всего построить последовательность обучающих задач. Свою для каждой темы: для алгебраических, иррациональных, тригонометрических, показательных и логарифмических уравнений или неравенств. И особняком — для задач с параметрами.
Возьмём, например, пособие «ЕГЭ. Математика. Профильный уровень. 2020» под редакцией И.В. Ященко и рассмотрим показательные и логарифмические неравенства (задача № 15 типового варианта задач). Только расположим их в собственном порядке. Скажем, начнём так:

1) $\dfrac{3^x-1}{3^x-3}\leqslant1+\dfrac{1}{3^x-2}$

2) $\log_5^2(25-x^2)-3\log_5(25-x^2)+2\geqslant0$

3) $2\cdot16^{-x}-17\cdot4^{-x}+8\leqslant0$

4) $\dfrac{\log_3x}{\log_3(\frac{x}{27})}\geqslant\dfrac{4}{\log_3x}+\dfrac{8}{\log_3^2x-\log_3{x^3}}$

и т.д.
(Здесь приведены задачи из вариантов 28, 23, 24, 21 соответственно).
В двух первых строчках записаны такие неравенства, в которых требуемая замена переменной совершенно очевидна, в третьей строчке она почти очевидна (нужно всего лишь заметить, что $16^{-x}=(4^{-x})^2$), в четвёртой тоже, но нужно использовать уже два тождества (два свойства логарифма).
Сколько потребуется подобных задач - разумеется, зависит от ученика. Когда обучаемый в какой-то степени освоится с решением подобных задач, можно переходить к чуть более сложным задачам. Например, такой:

5) $(\log_2^2x-2\log_2x)^2+36\log_2x+45<18\log_2^2x$

(задача из варианта 29). При этом неважно, конечно, примем ли мы за новую переменную сразу всё выражение в скобках либо вначале «обозначим одной буквой» логарифм, и лишь затем выполним следующую замену переменной. Оба пути одинаково ведут к цели. А вот на чём стоит акцентировать внимание при анализе решения, так это на том, что порою скобки играют роль подсказки, и потому не стоит торопиться их раскрывать. Как правило, имеет смысл взглянуть: нельзя ли всё выражение в скобках принять за новую переменную? Станет ли задача проще? Если нет, тогда раскрываем скобки и ищем другие пути упрощения уравнения/неравенства.
Кстати, такие вот рекомендации общего характера нередко оказываются довольно полезны для ученика.
Ещё один пример такой рекомендации, связанной с текущей темой: если в егэшной задаче встречаются степени с более чем двумя различными основаниями, то, как правило, это означает одно из трёх:
1) Можно свести все степени к единому основанию, разделив уравнение/неравенство либо на степень с наибольшим, либо на степень с наименьшим основанием (так бывает, когда используются основания степени вида $a^2, ab, b^2$);
2) Левую часть уравнения/неравенства можно разложить на множители;
3) Количество различных оснований степени можно уменьшить путём приведения подобных.
Вот соответствующие примеры:

6) $25^{2x^2-0,5}-0,6\cdot4^{2x^2+0,5}\leqslant10^{2x^2}$

7) $15^x-9\cdot5^x-3^x+9\leqslant0$

8) $\log_2(4^x+81^x-4\cdot9^x+3)\geqslant2x$

(Задачи из вариантов 3, 18, 20 соответственно).
Неравенство 6) сначала переписывается в виде

$\dfrac{1}{5}\cdot25^{2x^2}-10^{2x^2}-1,2\cdot4^{2x^2}\leqslant0$

а затем, после деления на степень с наименьшим основанием, в виде

$\dfrac{1}{5}\cdot\left(\dfrac{25}{4}\right)^{2x^2}-\left(\dfrac{5}{2}\right)^{2x^2}-1,2\leqslant0$

после чего заменой переменной $\left(\dfrac{5}{2}\right)^{2x^2}=t$ сводится к обычному квадратному неравенству.

Неравенство 7) группировкой членов с последующим разложением на множители приводится к виду

$(5^x-1)(3^x-9)\leqslant0$

после чего легко решается методом интервалов.
Неравенство 8) после потенцирования принимает вид

$4^x+81^x-4\cdot9^x+3\geqslant4^x$

после чего сразу упрощается

81^x-4\cdot9^x+3\geqslant0$

и сводится к квадратному неравенству заменой переменной $9^x=t$.

(Munin)

Этот пост был написан "наощупь", чтобы попытаться определить примерный уровень необходимого материала. Он мне самому сильно не нравится, но пока нет существенных зацепок - о чём конкретно говорить, наверное, это неизбежно. Думаю, будет лучше, если вы покажете задачу, подвести к решению которой школьника вам не удаётся, и можно будет поразмышлять, как это сделать. А пока - вот так, лишь самые общие слова...

 Профиль  
                  
 
 Re: О замене переменной в задачах школьной математики
Сообщение02.04.2020, 12:58 
Заслуженный участник
Аватара пользователя


30/01/06
72407

(Оффтоп)

Mihr в сообщении #1450339 писал(а):
Munin
Думаю, будет лучше, если вы покажете задачу, подвести к решению которой школьника вам не удаётся, и можно будет поразмышлять, как это сделать.

Да нет, задача пока так не стоит. Ситуация такая: пока задачи на уровне очевидных замен переменных. Например, Сканави 1 номер 7.056 (группа А): упростить выражение
    $\mathbf{7.056.}\quad(\log_a b+\log_b a+2)(\log_a b-\log_{ab} b)\log_b a-1.$
Но хочется, заглядывая в будущее, морально приготовиться к задачам на более сложные замены переменных. Правда, я даже не знаю, где таких задач поискать. Не считая "гробовых задач" типа
- квадратное уравнение, в которое вместо переменной подставлен квадратный трёхчлен;
- произведение двух квадратных уравнений
(Гельфанд, Шень. Алгебра), а какие-то более "просматриваемые", но и творческие.


Книжку Олехник, Потапов, Пасиченко посмотрю, спасибо! (На Либгене издание 1997, а не 2002, надеюсь, не критично.)

-- 02.04.2020 13:06:33 --

Книжкой я уже впечатлён. Теперь её осваивать...

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 6 ] 

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Google [Bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group