2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Решетка Медведева (Роджерс).
Сообщение26.12.2019, 08:30 
Заслуженный участник


31/12/15
936
Это очень известный результат, в теории множеств известный как лемма Кёнига (если дерево с конечным ветвлением бесконечно, то в нём есть бесконечный путь). Играет особую роль в интуиционизме Брауэра в виде так называемой теоремы о веере (она немного сложнее формулируется). Брауэр, отказавшись от закона исключённого третьего, не мог доказать многих результатов из анализа (например, что функция, непрерывная на отрезке, равномерно непрерывна на нём). Он добавил новую аксиому (так называемую бар-индукцию), которая доказуема классически (от противного) и позволяет доказать, что дерево с конечным ветвлением, у которого все ветви конечны, имеет конечную высоту (и потому конечное число узлов). Это позволило ему всё доказать в анализе, но вызвало большие споры. Сейчас это делают хитрее.

 Профиль  
                  
 
 Re: Решетка Медведева (Роджерс).
Сообщение26.12.2019, 17:50 
Заслуженный участник
Аватара пользователя


03/06/08
2320
МО
:oops: Не знал. Но все равно, достойно упоминания, потому что штучка изящная.
Очень интересно. А что это за хитрый способ?

 Профиль  
                  
 
 Re: Решетка Медведева (Роджерс).
Сообщение26.12.2019, 18:02 
Заслуженный участник


31/12/15
936
Когда дочитаете Роджерса и Барендрегта, попробуйте Драгалина "Математический интуиционизм".

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 18 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group