Возможно, название неудачное.
Итак, берём 6 произвольных точек на эллипсе (назовём их первичными).
Далее, соединяем каждую точку с каждой, получаем 15 прямых.
Теперь отмечаем все точки пересечения получившихся 15 прямых, кроме первичных (назовем эти точки вторичными). Получаем 45 (?) вторичных точек.
Вопрос 1: сколько можно провести прямых, содержащих три вторичных точки, но не содержащих первичных точек (назовем такие прямые вторичными) (45)?
Вопрос 2: сколько точек, из числа вторичных, через которые проходит
a) только одна вторичная прямая (1)
б) только две вторичных прямых (9)
в) только три вторичных прямых (27)
г) только четыре вторичных прямых (7)
д) только пять вторичных прямых (1)
е) только шесть вторичных прямых (0)
Вопрос 3: существуют ли вторичные прямые, содержащие 4 или более вторичных точек (0)?
Вопрос 4: если взять 6 точек на другой конике а не на эллипсе, изменятся ли ответы?
Попытка решения предпринята графическая, выше в скобках ответы, но я уверен что провёл не все прямые.
Общий план (но видны не все 45 точек):
Эллипс крупнее: