2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5 ... 8  След.
 
 Re: Хи-квадрат для распределения Лапласа
Сообщение03.09.2019, 20:58 


11/07/16
825
Andrey_Kireew Пожалуйста, объясните, как Вы дифференцируете абсолютные величины $|x_i-\beta|$ по $\beta$.

 Профиль  
                  
 
 Re: Хи-квадрат для распределения Лапласа
Сообщение03.09.2019, 21:06 


07/10/15

2400
Очень просто. Модуль необходимо аппроксимировать гладкой функцией (какой именно - думаю пояснять не надо), а затем перейти к пределу. В результате будет получен квантиль 0.5, или медиана.

На мой взгляд, эти вещи слишком сложны, и слишком второстепенны, чтобы вникать во все детали. Их следует просто принять на веру и не задавать излишних вопросов

 Профиль  
                  
 
 Re: Хи-квадрат для распределения Лапласа
Сообщение03.09.2019, 21:30 


11/07/16
825
Andrey_Kireew
Вас не затруднит изложить это подробно? Да, кстати, менять порядок дифференцирования и перехода к пределу можно только при определенных условиях(см., например, В. Зорич, Математический анализ.Ч.2. М.; Наука.-1984, гл.16).

 Профиль  
                  
 
 Re: Хи-квадрат для распределения Лапласа
Сообщение03.09.2019, 21:49 


07/10/15

2400
Я же Вам уже писал, что затруднит, тем более, что это слишком далеко от основного вопроса. Если очень интересно, проведите численный эксперимент, с чего Вы собственно и начали. Нетрудно будет заметить, что ММП оценка $\beta$ есть медиана случайной величины и не зависит от параметра масштаба, о чём я Вам пишу уже который раз. Если интересно - проверяйте.
Я так понимаю, Вы не считаете нужным принимать во внимание мои утверждения, считая их голословными. И соответственно, нетрудно догадаться, какое мнение у Вас сложилось обо мне самом. И тем не менее, оправдываться я не перед кем не собираюсь. Тем более, что выкладывать готовые решения прямо запрещено правилами форума, а все необходимые основы я уже предоставил

 Профиль  
                  
 
 Re: Хи-квадрат для распределения Лапласа
Сообщение03.09.2019, 21:54 


20/03/14
12041
Markiyan Hirnyk в сообщении #1413472 писал(а):
Lia Пожалуйста, обратите внимание на слова "в частности".

Приведите, пожалуйста, точную ссылку на полное утверждение для критерия Пирсона для сложных гипотез, где было бы явно указано, что оценки могут быть какими-то другими, нежели здесь. С доказательством.

 Профиль  
                  
 
 Re: Хи-квадрат для распределения Лапласа
Сообщение03.09.2019, 22:03 
Аватара пользователя


21/01/09
3925
Дивногорск
Andrey_Kireew в сообщении #1413437 писал(а):
несколько тысяч

Тогда центр распределения можно оценить через моду.

 Профиль  
                  
 
 Re: Хи-квадрат для распределения Лапласа
Сообщение03.09.2019, 22:11 
Заслуженный участник
Аватара пользователя


05/12/09
1813
Москва
Andrey_Kireew, вы абсолютно правы в ОМП для $\alpha$ и $\beta$. Проблема только в том, что когда в критерии хи-квадрат Фишера используются ОМП не по частотам попаданий в отрезки (об этом писала -mS-), а по исходным данным, то предельное распределение статистики хи-квадрат получается промежуточным между хи-квадратом с вычитанием числа оцениваемых параметров и без его вычитания. Собственно, то же самое наблюдается в случае оценки параметров нормального распределения. На этот счет есть какая-то древняя статья. Об этом упоминается, например, в книге Ю.Н.Тюрин, А.А.Макаров "Анализ данных на компьютере" (2003), раздел 10.6.

 Профиль  
                  
 
 Re: Хи-квадрат для распределения Лапласа
Сообщение03.09.2019, 22:15 


11/07/16
825
Lia Пожалуйста, Г. Крамер. Математические основы статистики.-М.:ИЛ.-1948.-с. 631, пункт 30.3 Критерий $\chi^2$ в случае, когда по выборке оцениваются некоторые параметры (с. 460-470).

 Профиль  
                  
 
 Re: Хи-квадрат для распределения Лапласа
Сообщение03.09.2019, 22:35 


07/10/15

2400
Александрович в сообщении #1413492 писал(а):
Тогда центр распределения можно оценить через моду

а в чём преимущество перед медианой?

-- 03.09.2019, 23:42 --

alisa-lebovski в сообщении #1413493 писал(а):
распределение статистики хи-квадрат получается промежуточным между хи-квадратом с вычитанием числа оцениваемых параметров и без его вычитания

Сразу напрашивается вывод: чем меньше интервалов у гистограммы, тем меньше эти различия. Помню попадалась статья, в которой рекомендовалось брать 10-12 столбиков и не более того.

 Профиль  
                  
 
 Re: Хи-квадрат для распределения Лапласа
Сообщение03.09.2019, 22:42 
Аватара пользователя


21/01/09
3925
Дивногорск
Если мода совпадёт с медианой то распределение симметричное и его можно представить в виде показательного.

 Профиль  
                  
 
 Re: Хи-квадрат для распределения Лапласа
Сообщение03.09.2019, 23:11 


07/10/15

2400
Александрович в сообщении #1413504 писал(а):
Если мода совпадёт с медианой то распределение симметричное

это далеко не факт ...
да и какое отношение всё это имеет именно к распределению Лапласа?

-- 04.09.2019, 00:24 --

Уважаемая alisa-lebovski, в целом многое прояснилось, но всё же остался один вопрос. Если среднее абсолютное отклонение есть ММП - оценка параметра $\alpha$, то почему же значение статистики Хи квадрат с этим параметром получается больше, чем Хи квадрат, вычисленное через дисперсию? Ведь по всей логике следовало бы ожидать совсем обратного.

 Профиль  
                  
 
 Re: Хи-квадрат для распределения Лапласа
Сообщение04.09.2019, 02:23 
Аватара пользователя


21/01/09
3925
Дивногорск
Andrey_Kireew, как бы Вы не считали гипотеза опровергается в любом случае?

 Профиль  
                  
 
 Re: Хи-квадрат для распределения Лапласа
Сообщение04.09.2019, 04:31 
Заслуженный участник
Аватара пользователя


23/11/06
4171
Markiyan Hirnyk в сообщении #1413494 писал(а):
Lia Пожалуйста, Г. Крамер. Математические основы статистики.-М.:ИЛ.-1948.-с. 631, пункт 30.3 Критерий $\chi^2$ в случае, когда по выборке оцениваются некоторые параметры (с. 460-470).

Ну и что? Там написано в точности то же самое: либо ОМП, полученные по группированной выборке, либо оценки по методу минимума хи-квадрат. Если же (об этом выше писала alisa-lebovski) использовать ОМП, полученные по исходной выборке, то при верной основной гипотезе предельное распределение статистики критерия хи-квадрат совпадает с распределением суммы $\xi_1^2+\ldots+\xi_{N-m-1}^2+c_1(\alpha,\beta)\xi_{N-m}^2+\ldots+c_m(\alpha,\beta)\xi_{N-1}^2$, где $m$ - количество оцененных параметров (в данном случае два), $\xi_i$ - независимые стандартные нормальные с.в., числа $0\leq c_i\leq 1$, но зависят, вообще говоря, от параметров $\alpha,\beta$.
Это результат Chernoff H., Lehmann E.L., Ann.Math.Statist. 1954, v.25, p.579-586.

Так что предельное распределение не только не есть $\chi^2_{N-m-1}$, но существенно больше. Использование ОМП, полученных по выборке, в критерии хи-квадрат, - это настолько типичная, широко известная, всюду подчёркиваемая ошибка, что обсуждать тут вообще нечего.

Если брать обычные ОМП по выборке (так же как и любые иные оценки), то статистика критерия будет (стохастически) больше, чем при использовании ОПМ по группированной выборке. На величину $c_1(\alpha,\beta)\xi_{N-m}^2+\ldots+c_m(\alpha,\beta)\xi_{N-1}^2$ И по ней вывод критерия хи-квадрат будет верен только в случае одобрения основной гипотезы. Если же эта бОльшая статистика попадает в критическую область, то не факт, что туда же попадёт и статистика, построенная по правильным оценкам, которая (стохастически) меньше.

 Профиль  
                  
 
 Re: Хи-квадрат для распределения Лапласа
Сообщение04.09.2019, 06:09 


07/10/15

2400
В общем я промоделировал несколько раз распределение Лапласа на выборках разного объёма (в maple). Результаты странные, и это мягко говоря. Получается, что средне выборочное значение точнее отражает параметр $\beta$, чем медиана. Аналогично и со средним абсолютным отклонением, которое хуже отражает $\alpha$, чем стандартное отклонение. Хотя должно быть всё наоборот. Какие же это ММП оценки, если наблюдается такая картина? Мне всегда казалось, что ММП оценка является эффективной, т.е. иметь минимальную, среди всех возможных оценок, дисперсию.

 Профиль  
                  
 
 Re: Хи-квадрат для распределения Лапласа
Сообщение04.09.2019, 08:12 
Заслуженный участник
Аватара пользователя


11/03/08
9904
Москва
А можно подробностей по моделированию?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 110 ]  На страницу Пред.  1, 2, 3, 4, 5 ... 8  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: sydorov


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group