Например, построить две касательные в произвольных точках участка кривой, найти точку их пересечения, найти середины отрезков касательных (от точек касания до точки пересечения) и соединить их. Если полученный отрезок касается кривой - это парабола, если нет - нет.
Не следует ли из этого, что такое же построение может характеризовать и эллипс с гиперболой, скажем для эллипса отрезок не пересекает кривую, для гиперболы - пересекает?
Пусть для эллипса это не так. Тогда есть пара точек, применив к которой описанную вами процедуру, получим отрезок, пересекающий кривую. И есть другая пара, дающая отрезок, не пересекающий кривую. Тогда, более-менее очевидно, найдётся пара точек, дающая отрезок, касающийся кривой. Но это значит, что предложенная процедура не определяет параболу однозначно.