Да, теперь понятно. Интересно, автор предполагал, что именно этот пример может привести к такому затруднению?
А вот тогда вопрос. Понимаю, что может прозвучит довольно по-дурацки, но у меня в голове есть некое представление, возможно, сложившееся еще в школе, что какие-то математические задачи более достойны, нежели другие. Не то, что более сложны, а, скажем, ну вот я совсем плохо понимаю тригонометрию. Прямо совсем. И мне этот раздел кажется более "крутым", чем арифметика. И алгебра, поскольку я крайне слабо умею преобразовывать, мне тоже кажется чем-то более "математическим", чем-то более "реальным", нежели арифметика.
И при этом я сталкиваюсь с такими трудностями уже в казалось бы изученной области, где речь не идет далее деления, сложения и возведения в степень.
Вообще, в математике существует такое психологически обусловленное деление на "достойные" и "недостойные" задачи или от этого концепта стоит сразу же отказаться и воспринимать любую задачу, вплоть до
как серьезную, достойную того, чтобы потратить время на ее доскональное изучение? Это важный для меня вопрос.
-- 06.07.2019, 20:19 --Дополню мысль: по ходу изложения в книжке Куранта, мне показалось, что глава, посвященная системам исчисления приведена скорее в качестве справки, как нечто не имеющее особого значения, поскольку далее эта идея никак не развивается, а единственный акцент на полноценном практическом применении касается бинарной системы, которая действительно сейчас широко используется. Поэтому, последующие главы о прогрессиях, например, которые значительно объемнее, кажутся более "важными".