2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Про ранг матрицы
Сообщение10.05.2019, 18:34 


01/09/14
357
Прошу проверить решение.

Задача:
Найти все значения $\lambda$ при которых равен двум ранг матрицы:$$A(\lambda) = \left (
\begin{matrix}
\lambda - 4 & 2 & 3 \\
2 & \lambda - 1 & 6 \\
3 & 6 & \lambda + 4
\end{matrix} \right ).$$

Решение:
Раз ранг матрицы равен двум, то это значит что можно умножить вторую строку на некоторое число $\alpha$ и сложить с третьей строкой, умноженной на некоторое число $\beta$, и получить первую строку. Исходя из этих соображений составляю систему уравнений:$$
\left\{
\begin{array}{rcl}
2 \alpha + 3 \beta &=& \lambda - 4 \\
(\lambda - 1) \alpha + 6 \beta &=& 2 \\
6 \alpha + (\lambda + 4) \beta & = & 3
\end{array}
\right..$$
Из первого и второго уравнения получаю что $\alpha = -2$ и $\beta = \dfrac {\lambda} {3}$. Эти значения подставляю в третье уравнение: $6(-2) + (\lambda + 4) \dfrac {\lambda} {3} = 3 \Rightarrow \lambda^2 + 4 \lambda - 45 = 0$. Корни этого уравнения: $\lambda_1 = 5$ и $\lambda_2 = -9$.
Проверка для $\lambda_1 = 5$:$$\left (
\begin{matrix}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{matrix} \right ) \Rightarrow \left (
\begin{matrix}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3
\end{matrix} \right ) \Rightarrow \left (
\begin{matrix}
1 & 2 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{matrix} \right )_.$$Значит, $\lambda_1 = 5$ не подходит.
Проверка для $\lambda_2 = -9$:$$\left (
\begin{matrix}
-13 & 2 & 3 \\
2 & -10 & 6 \\
3 & 6 & -5
\end{matrix} \right ) \Rightarrow \left ( \begin{matrix}
-13 & 2 & 3 \\
2 & -10 & 6 \\
1 & 16 & -11
\end{matrix} \right ) \Rightarrow \left ( \begin{matrix}
1 & 16 & -11 \\
2 & -10 & 6 \\
-13 & 2 & 3
\end{matrix} \right ) \Rightarrow \left ( \begin{matrix}
1 & 16 & -11 \\
0 & -42 & 28 \\
0 & 210 & -140
\end{matrix} \right ) \Rightarrow$$$$\Rightarrow \left ( \begin{matrix}
1 & 16 & -11 \\
0 & 3 & -2 \\
0 & 3 & -2
\end{matrix} \right ) \Rightarrow \left ( \begin{matrix}
1 & 16 & -11 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{matrix} \right )_.$$ Подходит.

Ответ: Под искомые требования подходит только $\lambda = -9$.

 Профиль  
                  
 
 Re: Про ранг матрицы
Сообщение10.05.2019, 19:04 
Заслуженный участник
Аватара пользователя


27/12/17
1439
Антарктика
А Вы что-нибудь знаете про ранг симметричной матрицы?

 Профиль  
                  
 
 Re: Про ранг матрицы
Сообщение10.05.2019, 19:12 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Charlz_Klug в сообщении #1392200 писал(а):
Раз ранг матрицы равен двум, то это значит что можно умножить вторую строку на некоторое число $\alpha$ и сложить с третьей строкой, умноженной на некоторое число $\beta$, и получить первую строку.

Не обязательно. Исходное утверждение выглядит так: раз ранг матрицы меньше 3, то это значит, что можно умножить первую, вторую и третью строки на некоторые числа $\omega,\alpha,\beta,$ сложить между собой, и получить нуль.

Уравнение, соответственно, должно получиться кубическое. Один из корней вы потеряли.

 Профиль  
                  
 
 Re: Про ранг матрицы
Сообщение10.05.2019, 19:35 


01/09/14
357
thething, без понятия. Буду копать. Munin, не подумал с этой стороны. Спасибо за ответы!

 Профиль  
                  
 
 Re: Про ранг матрицы
Сообщение10.05.2019, 20:13 
Заслуженный участник


20/12/10
9144
Charlz_Klug
А почему бы просто не вычислить определитель матрицы $A(\lambda)$, приравнять его нулю, решить уравнение?

 Профиль  
                  
 
 Re: Про ранг матрицы
Сообщение10.05.2019, 21:09 
Заслуженный участник
Аватара пользователя


30/01/06
72407
nnosipov
Это слишком просто. Ясно же, что квадратные уравнения сложнее кубических!

 Профиль  
                  
 
 Re: Про ранг матрицы
Сообщение10.05.2019, 21:15 


01/09/14
357
nnosipov, сделал так, получилось уравнение $\lambda^3 - \lambda^2 - 65 \lambda + 225 = 0$. Разложил на множители: $(\lambda -5)(\lambda - 5)(\lambda + 9) = 0$. И... Опять получается $\lambda = -9$. Других вариантов не вижу. Получается что только $\lambda = -9$ мне подходит.

 Профиль  
                  
 
 Re: Про ранг матрицы
Сообщение10.05.2019, 21:19 
Заслуженный участник


20/12/10
9144
Кстати, корень он не потерял. Значению $\lambda=5$ соответствует 2-мерное собственное подпространство. Значит, разных собственных значений не более двух.

А, вот и явное вычисление.

 Профиль  
                  
 
 Re: Про ранг матрицы
Сообщение10.05.2019, 21:21 


01/09/14
357
nnosipov, значит ответ верный?

 Профиль  
                  
 
 Re: Про ранг матрицы
Сообщение10.05.2019, 21:23 
Заслуженный участник


20/12/10
9144
Верный.

 Профиль  
                  
 
 Re: Про ранг матрицы
Сообщение10.05.2019, 21:23 


01/09/14
357
nnosipov, спасибо!

 Профиль  
                  
 
 Re: Про ранг матрицы
Сообщение10.05.2019, 22:16 
Заслуженный участник
Аватара пользователя


30/01/06
72407
nnosipov в сообщении #1392226 писал(а):
Кстати, корень он не потерял.

Но заранее этого он знать не мог. Лучше действовать надёжным путём (можно пойти на потерю корня, если потом его проверить).

 Профиль  
                  
 
 Re: Про ранг матрицы
Сообщение10.05.2019, 22:40 


01/09/14
357
Munin, спасибо!

 Профиль  
                  
 
 Re: Про ранг матрицы
Сообщение10.05.2019, 22:52 


16/04/19
161
Вроде можно просто привести к треугольному виду (нужно чтобы на диагонали получился ровно 1 ноль и 2 не нуля) и, в данном случае, получится уравнение 1-й степени. Строки можно поменять сперва для удобства:
$$\left (
\begin{matrix}
2 & \lambda - 1 & 6 \\
3 & 6 & \lambda + 4 \\
\lambda - 4 & 2 & 3 \\
\end{matrix} \right ).$$
В конце получится (на $(\lambda - 5)$ понятно почему можно сократить)
$$\left (
\begin{matrix}
2 & \lambda - 1 & 6 \\
0 & 3 & -2 \\
0 & 0 & \lambda + 9 \\
\end{matrix} \right ).$$

(Оффтоп)

А если довести матрицу до диагонального вида и все элементарные действия (включая перестановку строк) произвести с единичной матрицей, то из единичной матрицы получится обратная к исходной.

 Профиль  
                  
 
 Re: Про ранг матрицы
Сообщение11.05.2019, 00:47 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
Charlz_Klug, понимаете ли Вы, что эти две вещи связаны?
$\bullet$ при $\lambda=5$ матрица $A(\lambda)$ имеет ранг на $2$ меньше своего порядка, т.е. трёх;
$\bullet$ корень $\lambda=5$ уравнения $\det A(\lambda)=0$ имеет кратность $2$.

Можете ли Вы перебросить логический мостик от одного к другому, с учётом того, что Ваша матрица симметрична?
Возможно, Вы этого ещё не проходили.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 26 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: BVR


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group