2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Из трудов ферматистов
Сообщение18.04.2019, 07:58 
Заслуженный участник


20/12/10
8858
Для каждого натурального $n$ найдите все рациональные корни уравнения $x^n+(x+1)^n=(x+2)^n$.

P.S. Задача несложная и вполне содержательная (видел ее когда-то на AoPS, но ссылку отыскать сложно).

 Профиль  
                  
 
 Re: Из трудов ферматистов
Сообщение18.04.2019, 08:07 
Аватара пользователя


24/03/19
147
Может, я что-нибудь неправильно понимаю, но при $n \ge 3$ решений не должно быть по ВТФ. Случаи же $n=1$ и $n=2$ тривиальны. Нет?

UPD. Кажется, понял. Соль в том, чтобы разобраться без применения ВТФ.

 Профиль  
                  
 
 Re: Из трудов ферматистов
Сообщение18.04.2019, 08:26 
Заслуженный участник


20/12/10
8858
SiberianSemion
Да, именно это и предлагается.

 Профиль  
                  
 
 Re: Из трудов ферматистов
Сообщение18.04.2019, 11:15 
Аватара пользователя


24/03/19
147
Оставим в стороне тривиальное $n = 1.$ По всем канонам, дело сводится к случаю простых степеней $n = p$: $$x^p + (x+1)^p = (x+2)^p.$$
Сперва покажем, что не существует целых решений $x$, а потом сведем общий случай к этому. Тождество по модулю $x+1$ превращается в: $(-1)^p \equiv 1,$ а значит, $p$ четно; $p = 2.$ В этом случае уравнение тривиально не имеет даже рациональных решений.

Теперь поищем рациональные решения $x = k/m,$ где $k, m$ взаимно просты. Важно потребовать $m > 0$. Подставляя $x$ в исходное уравнение, получим $$k^p + (k+m)^p = (k+2m)^p.$$
По модулю $m$ это превращается в $k^p \equiv 0$ (mod $m$), что возможно только при разобранном случае $m=1.$

Значит, решение $x = n = 1$ единственно.

 Профиль  
                  
 
 Re: Из трудов ферматистов
Сообщение18.04.2019, 11:25 
Заслуженный участник


12/08/10
1646
SiberianSemion в сообщении #1388389 писал(а):
По всем канонам, дело сводится к случаю простых степеней $n = p$:

Это не правда. Точнее стандартное рассуждение тут не работает.

 Профиль  
                  
 
 Re: Из трудов ферматистов
Сообщение18.04.2019, 11:31 
Аватара пользователя


24/03/19
147
Действительно!

 Профиль  
                  
 
 Re: Из трудов ферматистов
Сообщение18.04.2019, 11:38 


26/08/11
2082
nnosipov Очень очень рад увидеть Вас снова на форуме!
SiberianSemion в сообщении #1388389 писал(а):
По всем канонам, дело сводится к случаю простых степеней $n = p$:
Разве случй $x^{pq}+(x+1)^{pq}=(x+2)^{pq}$ можно свести к $A^p+(A+1)^p=(A+2)^p$ ?

Буду решать смещением:

$(x-1)^n+x^n=(x+1)^n$ $x$ четное.
Получается полином степени $n$ с старшим коеффициентом 1 и свободный член $-2$, если $n$ нечетно и $0$, если четно.

А значит если корни рациональные, то целые - делители свободного члена.

При нечетном $n$ достаточно проверить $x=\pm 2$

При четном $n$ есть решение $x=0$. Отрицательные быть не могут т.к тогда $|x-1|>|x+1|$

Делением на $x$ получим полином $n-1$ степени с свободным членом $2n$

И значит если $x$ - корень, то он делитель $2n$. Тоесть $2n \ge x$.

Но тогда $(x+1)^n-(x-1)^n \ge 2nx^{n-1}\ge x^n$

(первые два члена бинома Ньютона).

Равенство только при $n=2,x=4$

 Профиль  
                  
 
 Re: Из трудов ферматистов
Сообщение18.04.2019, 11:53 
Аватара пользователя


24/03/19
147
И да, я потерял корни $x = -1, n -$ четное; $x = 3, n = 2.$ Эх!

 Профиль  
                  
 
 Re: Из трудов ферматистов
Сообщение18.04.2019, 11:55 
Заслуженный участник


20/12/10
8858
Shadow
Рад приветствовать, взаимно!

Как-то просто у Вас все получилось, но, похоже, все ОК. У меня два решения, но оба длиннее.

 Профиль  
                  
 
 Re: Из трудов ферматистов
Сообщение18.04.2019, 11:56 


05/09/16
11627
SiberianSemion в сообщении #1388389 писал(а):
Значит, решение $x = n = 1$ единственно.

Вот ещё: $x=-1;n=2k; k \in \mathbb N$

 Профиль  
                  
 
 Re: Из трудов ферматистов
Сообщение18.04.2019, 12:00 
Аватара пользователя


24/03/19
147
nnosipov в сообщении #1388396 писал(а):
У меня два решения, но оба длиннее.

А идеи там другие? Покажите, пожалуйста, если не затруднит. Можно в ЛС.

 Профиль  
                  
 
 Re: Из трудов ферматистов
Сообщение18.04.2019, 12:09 
Заслуженный участник


20/12/10
8858
SiberianSemion в сообщении #1388400 писал(а):
А идеи там другие?
Да, другие, но я, наверное, перемудрил. Позднее здесь напишу, сейчас, увы, срочные дела.

-- Чт апр 18, 2019 16:11:14 --

wrest в сообщении #1388397 писал(а):
Вот ещё: $x=-1;n=2k; k \in \mathbb N$
В новых обозначениях это соответствует $x=0$.

 Профиль  
                  
 
 Re: Из трудов ферматистов
Сообщение18.04.2019, 19:21 
Заслуженный участник


20/12/10
8858
nnosipov в сообщении #1388402 писал(а):
Позднее здесь напишу
Нашел у себя вот такой текст. Напоминаю, что решается уравнение в исходных обозначениях, т.е. $x^n+(x+1)^n=(x+2)^n$. Уже обсуждалось, что достаточно найти все целочисленные решения, других рациональных решений нет.

First solution. If $n=1$ then $x=1$. If $x=-1$ then the given equality holds for all even $n$. In the case $x \neq -1$, $n>1$ we rewrite the equality as
$$
 (x+1)^n=(x+2)^n-x^n.
$$
Clearly, $x$ is odd. If $\nu_2(n)=0$ then $\nu_2((x+2)^n-x^n)=1$ and we have a contradiction since $\nu_2((x+1)^n)>1$. If $\nu_2(n)>0$ we obtain
$$
 \nu_2((x+2)^n-x^n)=\nu_2((x+2)^2-x^2)-1+\nu_2(n)=\nu_2(x+1)+1+\nu_2(n).
$$
Hence, $\nu_2((x+1)^n)=n\nu_2(x+1)=\nu_2(x+1)+1+\nu_2(n)$. Thus,
$$
 n=1+\frac{1+\nu_2(n)}{\nu_2(x+1)} \leqslant 2+\nu_2(n).
$$
From here we conclude that $n \leqslant 4$. Further is obviously.

Second solution. Let's consider $n=2m$ and $x \geqslant 1$. We have
$$
 (x^m)^2+((x+1)^m)^2=((x+2)^m)^2.
$$
Hence, $x^m=u^2-v^2$, $(x+1)^m=2uv$, $(x+2)^m=u^2+v^2$ for some positive integers $u>v$ with $\gcd{(u,v)}=1$, $u \not\equiv v \pmod{2}$. If $m$ is odd, then
$$
 2u^2=((x+1)+1)^m+((x+1)-1)^m
$$
is divisible by $2(x+1)$. Since $(x+1)^m=2uv$ and $\gcd{(u,v)}=1$, we obtain $v=1$. Therefore,
$$
 (x+2)^m-x^m=2
$$
and $m=1$. If $m$ is even, then
$$
 2v^2=((x+1)+1)^m-((x+1)-1)^m
$$
is divisible by $2(x+1)$ and by similar reasonings we obtain $u=1$. In this case we get
$$
 (x+2)^m+x^m=2,
$$
which is impossible.

Answer. $(n,x) \in \{(1,1), (2,3)\}$ and $x=-1$ for all even $n$.

 Профиль  
                  
 
 Re: Из трудов ферматистов
Сообщение19.04.2019, 02:43 
Аватара пользователя


24/03/19
147
Второе решение вызывает вопросы. Пифагоровы тройки определены с точностью до постоянных множителей. Уравнение не сохраняет свой вид при сокращении на одно и то же число. Правомерно ли предполагать, что указанные тройки примитивны?

 Профиль  
                  
 
 Re: Из трудов ферматистов
Сообщение19.04.2019, 03:10 
Заслуженный участник


20/12/10
8858
SiberianSemion в сообщении #1388521 писал(а):
Правомерно ли предполагать, что указанные тройки примитивны?
Ну, это же тройка чисел $x^m$, $(x+1)^m$, $(x+2)^m$, а здесь первые два числа, очевидно, взаимно просты.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 15 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: mihaild


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group