| 
											 
													Последний раз редактировалось Red_Herring 22.04.2019, 03:04, всего редактировалось 1 раз.
												
  
						 
											Тогда я переписал код так что сначала он берет из pdf, который получен с сервера, буклет 1, и пишет в него вариант A, потом буклет 21, и пишет в него вариант B, потом 41 (C), 61 (D) и 81 (E), потом буклет 2 и пишет в него вариант A, и так по кругу. Тогда в pdf файле идут A,B,C,D,E,A,B, ... а вот сервер сортирует A,A,,.....,A, B,....,B, C,...,C, D,...,D, E,...,E. Вот  pdf file, который Crowdmark Server сделал для нас, а внизу LaTeX file. Большую часть его занимают определение 5 вариантов problem, booklet (который включает в себя problem), bookletset (5 последовательных буклетов), а исполнение это просто линия, начинающаяся с \forloop,  и затем переопределения этих штук для второй секции и опять исполнение. Маленький красный номер (реально ненужный, здесь просто для демонстрации) нумерует буклеты в пдф файле на выходе, и соответственно в той пачке, которую мы получаем от PrintShop, а большой черный номер это номера буклетов в Crowdmark, который и определяет в каком порядке их проверяют (по умолчанию). Естественно, что пдф файл dummy-Q7.pdf  должен быть в той же директории.  пакет forloop определяет соответствующую команду, пакет ifthen команду ifthenelse, ну а intcalc целочисленную арифметику.  
\documentclass[14pt, oneside]{memoir} 
 
\usepackage{ifthen} 
 
\usepackage{intcalc} 
 
\usepackage{forloop} 
 
\usepackage{array} 
\extrarowheight=5pt 
 
\usepackage{mathtools} 
\usepackage{amssymb, amsthm} 
 
%\usepackage{tikz} 
 
%\usetikzlibrary{patterns} 
\usepackage[absolute,overlay]{textpos} 
\usepackage{pdfpages} 
 
\usepackage{enumitem} 
\usepackage[textwidth=.75in]{todonotes} 
 
\textheight=9.5in 
\voffset=-20pt 
\parindent=0pt 
 
\theoremstyle{definition} 
\newtheorem*{problem}{Problem} 
\newcounter{problem} 
 
\pagestyle{empty} 
 
\newcounter{BookletSetNumber} 
\newcounter{ProblemVersion} 
\newcounter{BookletNumber} 
\newcounter{CMBookletNumber} 
 
\newcounter{CMBpage} 
 
\newcommand{\lec}{LEC 0101} 
 
\newcommand{\problemOneAX}{\begin{problem}[3pt] 
Suppose that $u$ is a harmonic function on the open unit disc $\mathbb{D}=\{(x,y)\colon  x^2+y^2 <1\}\subset\mathbb{R}^2$ which is continuous on the closed unit disc $\overline{\mathbb{D}}=\{(x,y)\colon  x^2+y^2 \le  1\}$ and is equal to 
        \begin{equation*}       g(\theta) = \theta(2\pi-\theta), 
                \quad 0\le  \theta \le  2\pi,   \end{equation*} 
on the boundary unit circle $S^1=\{(x,y)\colon  x^2+y^2 = 1\}$. 
\begin{enumerate}[label=(\alph*)] 
        \item Determine the maximum value that $u$ takes on the closed disc $\overline{\mathbb{D}}$. 
        \item Determine $u(0)$. 
\end{enumerate} 
\end{problem}} 
 
\newcommand{\problemOneBX}{\begin{problem}[3pt] 
Suppose that $u$ is a harmonic function on the open unit disc $\mathbb{D}=\{(x,y)\colon  x^2+y^2 <1\}\subset\mathbb{R}^2$ which is continuous on the closed unit disc $\overline{\mathbb{D}}=\{(x,y)\colon  x^2+y^2 \le  1\}$ and is equal to 
        \begin{equation*}       g(\theta) = \theta^4, \quad -\pi\le \theta\le \pi,      \end{equation*} 
on the boundary unit circle $S^1=\{(x,y)\colon  x^2+y^2 = 1\}$. 
\begin{enumerate}[label=(\alph*)] 
        \item Determine the maximum value that $u$ takes on the closed disc $\overline{\mathbb{D}}$. 
        \item Determine $u(0)$. 
        \end{enumerate} 
\end{problem}} 
 
\newcommand{\problemOneCX}{\begin{problem}[3pt] 
Suppose that $u$ is a harmonic function on the open unit disc $\mathbb{D}=\{(x,y)\colon  x^2+y^2 <1\}\subset\mathbb{R}^2$ which is continuous on the closed unit disc $\overline{\mathbb{D}}=\{(x,y)\colon  x^2+y^2 \le  1\}$ and is equal to 
        \begin{equation*}       g(\theta) = \left\{ 
                                        \begin{aligned} 
                                                &\cos(\theta),  && |\theta|\le \frac{\pi}{4}, \\ 
                                                &\frac{1}{\sqrt{2}}, 
                                                                                && \theta\in\bigl[-\pi,-\frac{\pi}{4}\bigr)\cup\bigl(\frac{\pi}{4},\pi\bigr], 
                                        \end{aligned} 
        \right. \end{equation*} 
on the boundary unit circle $S^1=\{(x,y)\colon  x^2+y^2 = 1\}$. 
\begin{enumerate}[label=(\alph*)] 
        \item Determine the maximum value that $u$ takes on the closed disc $\overline{\mathbb{D}}$. 
        \item Determine $u(0)$. 
\end{enumerate} 
\end{problem}} 
 
\newcommand{\problemOneDX}{\begin{problem}[3pt] 
Suppose that $u$ is a harmonic function on the open unit disc $\mathbb{D}=\{(x,y)\colon  x^2+y^2 <1\}\subset\mathbb{R}^2$ which is continuous on the closed unit disc $\overline{\mathbb{D}}=\{(x,y)\colon  x^2+y^2 \le  1\}$ and is equal to 
        \begin{equation*}       g(\theta) = \left\{ 
                                        \begin{aligned} 
                                                &\sec^2(\theta),        && |\theta|\le \frac{\pi}{4}, \\ 
                                                &2,                             && \theta\in\bigl[-\pi,-\frac{\pi}{4}\bigr)\cup\bigl(\frac{\pi}{4},\pi\bigr], 
                                        \end{aligned} 
        \right. \end{equation*} 
on the boundary unit circle $S^1=\{(x,y)\colon  x^2+y^2 = 1\}$. 
\begin{enumerate}[label=(\alph*)] 
        \item Determine the maximum value that $u$ takes on the closed disc $\overline{\mathbb{D}}$. 
        \item Determine $u(0)$. 
\end{enumerate} 
\end{problem}} 
 
\newcommand{\problemOneEX}{\begin{problem}[3pt] 
Suppose that $u$ is a harmonic function on the open unit disc $\mathbb{D}=\{(x,y)\colon  x^2+y^2 <1\}\subset\mathbb{R}^2$ which is continuous on the closed unit disc $\overline{\mathbb{D}}=\{(x,y)\colon  x^2+y^2 \le  1\}$ and is equal to 
        \begin{equation*}       g(\theta) = \left\{ 
                                        \begin{aligned} 
                                                &-|\sin(\theta)|,       && |\theta|\le \frac{\pi}{2}, \\[4pt] 
                                                &-1,                            && \theta\in\bigl[-\pi,-\frac{\pi}{2}\bigr)\cup\bigl(\frac{\pi}{2},\pi\bigr], 
                                        \end{aligned} 
        \right. \end{equation*} 
on the boundary unit circle $S^1=\{(x,y)\colon  x^2+y^2 = 1\}$. 
\begin{enumerate}[label=(\alph*)] 
        \item Determine the maximum value that $u$ takes on the closed disc $\overline{\mathbb{D}}$. 
        \item Determine $u(0)$. 
\end{enumerate} 
\end{problem}} 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
\newcommand{\problemOneAY}{\begin{problem}[3pt] 
Suppose that $u$ is a harmonic function on the open unit disc $\mathbb{D}=\{(x,y)\colon  x^2+y^2 <1\}\subset\mathbb{R}^2$ which is continuous on the closed unit disc $\overline{\mathbb{D}}=\{(x,y)\colon  x^2+y^2 \le  1\}$ and is equal to 
        \begin{equation*}       g(\theta) = \theta(2\pi-\theta), 
                \quad 0\le  \theta \le  2\pi,   \end{equation*} 
on the boundary unit circle $S^1=\{(x,y)\colon  x^2+y^2 = 1\}$. 
\begin{enumerate}[label=(\alph*)] 
        \item Determine the maximum value that $u$ takes on the closed disc $\overline{\mathbb{D}}$. 
        \item Determine $u(0)$. 
\end{enumerate} 
\end{problem}} 
 
\newcommand{\problemOneBY}{\begin{problem}[3pt] 
Suppose that $u$ is a harmonic function on the open unit disc $\mathbb{D}=\{(x,y)\colon  x^2+y^2 <1\}\subset\mathbb{R}^2$ which is continuous on the closed unit disc $\overline{\mathbb{D}}=\{(x,y)\colon  x^2+y^2 \le  1\}$ and is equal to 
        \begin{equation*}       g(\theta) = \frac{\sin(\theta)}{2+\cos(\theta)}, \quad -\pi\le \theta\le \pi,   \end{equation*} 
on the boundary unit circle $S^1=\{(x,y)\colon  x^2+y^2 = 1\}$. 
\begin{enumerate}[label=(\alph*)] 
        \item Determine the maximum value that $u$ takes on the closed disc $\overline{\mathbb{D}}$. 
        \item Determine $u(0)$. 
        \end{enumerate} 
\end{problem}} 
 
\newcommand{\problemOneCY}{\begin{problem}[3pt] 
Suppose that $u$ is a harmonic function on the open unit disc $\mathbb{D}=\{(x,y)\colon  x^2+y^2 <1\}\subset\mathbb{R}^2$ which is continuous on the closed unit disc $\overline{\mathbb{D}}=\{(x,y)\colon  x^2+y^2 \le  1\}$ and is equal to 
        \begin{equation*}       g(\theta)=\frac{1}{1+\theta^2}  \qquad -\pi\le \theta<\pi \end{equation*} 
on the boundary unit circle $S^1=\{(x,y)\colon  x^2+y^2 = 1\}$. 
\begin{enumerate}[label=(\alph*)] 
        \item Determine the maximum value that $u$ takes on the closed disc $\overline{\mathbb{D}}$. 
        \item Determine $u(0)$. 
\end{enumerate} 
\end{problem}} 
 
\newcommand{\problemOneDY}{\begin{problem}[3pt] 
Suppose that $u$ is a harmonic function on the open unit disc $\mathbb{D}=\{(x,y)\colon  x^2+y^2 <1\}\subset\mathbb{R}^2$ which is continuous on the closed unit disc $\overline{\mathbb{D}}=\{(x,y)\colon  x^2+y^2 \le  1\}$ and is equal to 
        \begin{equation*}       g(\theta) = \sin(\frac{\theta}{2})\qquad 0\le \theta <2\pi \end{equation*} 
on the boundary unit circle $S^1=\{(x,y)\colon  x^2+y^2 = 1\}$. 
\begin{enumerate}[label=(\alph*)] 
        \item Determine the maximum value that $u$ takes on the closed disc $\overline{\mathbb{D}}$. 
        \item Determine $u(0)$. 
\end{enumerate} 
\end{problem}} 
 
\newcommand{\problemOneEY}{\begin{problem}[3pt] 
Suppose that $u$ is a harmonic function on the open unit disc $\mathbb{D}=\{(x,y)\colon  x^2+y^2 <1\}\subset\mathbb{R}^2$ which is continuous on the closed unit disc $\overline{\mathbb{D}}=\{(x,y)\colon  x^2+y^2 \le  1\}$ and is equal to 
        \begin{equation*}       g(\theta) = \theta(2\pi-\theta), 
                \qquad 0\le  \theta <2\pi,      \end{equation*} 
on the boundary unit circle $S^1=\{(x,y)\colon  x^2+y^2 = 1\}$. 
\begin{enumerate}[label=(\alph*)] 
        \item Determine the maximum value that $u$ takes on the closed disc $\overline{\mathbb{D}}$. 
        \item Determine $u(0)$. 
\end{enumerate} 
\end{problem}} 
 
\newcommand\problemOne[1]{\ifthenelse{\equal{#1}{1}}% 
                     {\problemOneAX}{\ifthenelse{\equal{#1}{2}}{\problemOneBX}{\ifthenelse{\equal{#1}{3}}{\problemOneCX}{\ifthenelse{\equal{#1}{4}}{\problemOneDX}{\ifthenelse{\equal{#1}{0}}{\problemOneEX}{Rats! An error!}}}}}} 
 
        
 
\newcommand{\booklet}{% 
 
\setcounter{CMBpage}{\intcalcSub{\intcalcMul{\theCMBookletNumber}{4}}{3}} 
{\ } 
\begin{textblock}{2}(.5,.7) 
{\color{red}\theBookletNumber}  
\end{textblock} 
 
\begin{textblock}{2}(2,1) 
\Huge{\textbf{\theCMBookletNumber }} 
\end{textblock} 
 
\begin{textblock}{2}(2,1) 
\includepdf[pages=\theCMBpage ]{dummy-Q7.pdf} 
\end{textblock} 
{\ } 
\vskip20pt 
 
\begin{center} 
{\textbf{APM 346: \lec}} 
\vskip 10pt 
{\textbf{Quiz 7 (Week 12)}} 
 
\vskip295pt 
 
\end{center} 
 
\newpage 
 
\refstepcounter{CMBpage} 
 
\problemOne{\theProblemVersion} 
 
\begin{textblock}{2}(2,1) 
\includepdf[pages=\theCMBpage ]{dummy-Q7.pdf} 
\end{textblock} 
 
\newpage 
 
\refstepcounter{CMBpage} 
 
{\ } 
 
\begin{textblock}{2}(2,1) 
\includepdf[pages=\theCMBpage ]{dummy-Q7.pdf} 
\end{textblock} 
 
\newpage 
 
\refstepcounter{CMBpage} 
 
{\ } 
 
\begin{textblock}{2}(2,1) 
\includepdf[pages=\theCMBpage ]{dummy-Q7.pdf} 
\end{textblock} 
 
\newpage 
 
} 
 
\newcommand{\bookletsetconf}{\setcounter{CMBookletNumber}{\theBookletSetNumber}} 
 
\newcommand{\bookletset}{] 
\bookletsetconf 
 
\setcounter{BookletNumber}{\intcalcSub{\intcalcMul{\theBookletSetNumber}{5}}{4}} 
\setcounter{ProblemVersion}{0} 
 
\booklet 
\refstepcounter{ProblemVersion} 
\refstepcounter{BookletNumber} 
\addtocounter{CMBookletNumber}{20} 
 
\booklet 
 
\refstepcounter{ProblemVersion} 
\refstepcounter{BookletNumber} 
\addtocounter{CMBookletNumber}{20} 
 
\booklet 
 
\refstepcounter{ProblemVersion} 
\refstepcounter{BookletNumber} 
\addtocounter{CMBookletNumber}{20} 
 
\booklet 
 
\refstepcounter{ProblemVersion} 
\refstepcounter{BookletNumber} 
\addtocounter{CMBookletNumber}{20} 
 
\booklet 
 
} 
 
\begin{document} 
 
\forloop{BookletSetNumber}{1}{\value{BookletSetNumber} < 17}{\bookletset} 
 
\renewcommand{\lec}{LEC 0201} 
 
\renewcommand\problemOne[1]{\ifthenelse{\equal{#1}{1}}% 
                     {\problemOneAY}{\ifthenelse{\equal{#1}{2}}{\problemOneBY}{\ifthenelse{\equal{#1}{3}}{\problemOneCY}{\ifthenelse{\equal{#1}{4}}{\problemOneDY}{\ifthenelse{\equal{#1}{0}}{\problemOneEY}{Rats! An error!}}}}}} 
 
\renewcommand{\bookletsetconf}{\setcounter{CMBookletNumber}{\intcalcAdd{\theBookletSetNumber}{80}}} 
 
\forloop{BookletSetNumber}{21}{\value{BookletSetNumber} < 38}{\bookletset} 
 
\end{document} 
   
					 					 |