2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5  След.
 
 Доказательство теоремы в четырехмерном пространстве
Сообщение05.03.2019, 12:46 
Даны две 2-плоскости имеющие только одну общую точку находящиеся в четырехмерном евклидовом пространстве. Доказать, что существует 2-плоскость, которая пересекает эти плоскости по прямым и при этом перпендикулярна этим данным плоскостям в 3-х мерном смысле перпендикулярности плоскостей.
Изображение

Решение можно найти в учебниках по четырехмерной геометрии, например, за авторством Смировой И.М. и Смирнова В.А.: «Пусть $\alpha$ и $\beta$ две плоскости, имеющие одну общую точку $C$. Через точку $C$ проведем два пространства, перпендикулярные плоскостям $\alpha$ и $\beta$, соответственно. Их пересечением будет искомая плоскость $\gamma$, перпендикулярная этим плоскостям».
Это доказательство не доказательство, т.к. плоскость $\gamma$ может пересекать $\alpha$ и $\beta$ в их общей точке $C$ и не иметь с этими плоскостями больше никаких других общих точек, кроме точки $C$, а следовательно, $\gamma$ не будет искомой плоскостью. Кроме того, если пространство перпендикулярно плоскости это еще не значит, что любая плоскость, заключенная в этом пространстве, будет перпендикулярна исходной плоскости.

Пусть $\alpha$ и $\beta$ две плоскости, имеющие одну общую точку $C$. Через точку $C$ проведем два пространства $A$ и $B$, перпендикулярные плоскостям $\alpha$ и $\beta$, соответственно . Пространство $A$ пересечет плоскость $\alpha$ по прямой $a_1$, а плоскость $\beta$ по прямой $b_1$. Пространство $B$ пересечет плоскость $\alpha$ по прямой $a_2$, а плоскость $\beta$ по прямой $b_2$. Пространство $A$ пересечется с пространством $B$ по плоскости $\gamma$. Плоскость $\gamma$ будет искомой лишь в том случае, если прямая $a_1$ совпадет с прямой $a_2$ и вместе с тем прямая $b_1$ совпадет с прямой $b_2$. Но из чего следует обязательность или хотя бы возможность такого совпадения не ясно. Поэтому я и утверждаю, что это доказательство не доказывает данной теоремы.

Некоторые отправные сведения для доказательства теоремы:
1) Если два различных пространства имеют общую точку, то они пересекаются по плоскости.
2) Если плоскость не лежит в пространстве и имеет с этим пространством общую точку, то она пересекает пространство по прямой.
3) По определению плоскость $\alpha$, пересекающая пространство $\Omega$, по прямой $c$, называется перпендикулярной пространству $\Omega$, если она перпендикулярна любой плоскости, лежащей в этом пространстве и проходящей через прямую $c$.
4) Признак перпендикулярности плоскости и пространства: Если плоскость проходит через прямую перпендикулярную пространству, то такие плоскость и пространство взаимно перпендикулярны. Итак, проведем через любую точку плоскости пучок прямых лежащих в этой плоскости. К каждой прямой пучка проведем пространство перпендикулярное этой прямой. Такое пространство единственно(что доказывается в этой же книжке). Каждое такое пространство будет перпендикулярно данной плоскости. Но совпадать эти пространства не могут, т.к. в противном случае через точку пространства будет проходить не единственный перпендикуляр к нему. Значит утверждение(Через любую точку гиперпространства проходит единственное пространство, перпендикулярное данной плоскости) не верно.

 
 
 
 Posted automatically
Сообщение05.03.2019, 14:52 
 i  Тема перемещена из форума «Дискуссионные темы (М)» в форум «Карантин»
по следующим причинам:


- отсутствуют собственные содержательные попытки решения задач(и).

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение12.03.2019, 22:10 
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»

 
 
 
 Re: Доказательство теоремы в четырехмерном пространстве
Сообщение13.03.2019, 02:57 
Сам результат кажется верным. Возьмём трёхмерное подпространство в общем положении с этими плоскостями (пересекает каждую из них по прямой и не содержит точку их пересечения). Тогда прямые пересечения будут скрещиваться (если бы они пересекались, у двух плоскостей была бы ещё одна общая точка). У двух скрещивающихся прямых в трёхмерном пространстве есть единственный общий перпендикуляр, через него и проводим нужную плоскость.

 
 
 
 Re: Доказательство теоремы в четырехмерном пространстве
Сообщение13.03.2019, 03:48 
"Доказательство" Смирновых, действительно, ошибочно. Я не знаю, как доказать средствами синтетической геометрии (рассуждение george66 не понял). Можно сделать так. Будем считать наше пространство не просто аффинным, а линейным, с началом координат в той точке. Пусть $A$ и $B$ --- операторы ортогональной проекции на $\alpha$ и $\beta$ соответственно, а $A'$ и $B'$ --- их ограничения на $\beta$ и $\alpha$ соответственно. Тогда $A'$ и $B'$ --- изоморфизмы между $\alpha$ и $\beta$. А $R_\alpha=A'B'\colon \alpha\to\alpha$, $R_\beta=B'A'\colon\beta\to\beta$ --- операторы на $\alpha$ и $\beta$. Можно показать, что они оба симметрические. Если $v$ --- собственный вектор для $R_\alpha$, то $v'=B'v$ --- собственный для $R_\beta$, а натянутая на них плоскость --- искомая (и таковых будет в общем случае две).

 
 
 
 Re: Доказательство теоремы в четырехмерном пространстве
Сообщение13.03.2019, 09:27 
george66 в сообщении #1381503 писал(а):
Сам результат кажется верным. Возьмём трёхмерное подпространство в общем положении с этими плоскостями (пересекает каждую из них по прямой и не содержит точку их пересечения). Тогда прямые пересечения будут скрещиваться (если бы они пересекались, у двух плоскостей была бы ещё одна общая точка). У двух скрещивающихся прямых в трёхмерном пространстве есть единственный общий перпендикуляр, через него и проводим нужную плоскость.



Спасибо, что проявили интерес к моему вопросу.
Действительно, мне тоже сам результат показался верным, но мало ли, что нам кажется, стоит вспомнить, что казалось всему человечеству по поводу 5го постулата Евклида и какой был результат в итоге.
То доказательство, что Вы привели, так же не кажется мне полным, т.к. общий перпендикуляр к скрещивающимся прямым не обязательно будет перпендикуляром к исходным плоскостям в которых лежат данные скрещивающиеся прямые.

-- 13.03.2019, 10:41 --

vpb в сообщении #1381509 писал(а):
"Доказательство" Смирновых, действительно, ошибочно. Я не знаю, как доказать средствами синтетической геометрии (рассуждение george66 не понял). Можно сделать так. Будем считать наше пространство не просто аффинным, а линейным, с началом координат в той точке. Пусть $A$ и $B$ --- операторы ортогональной проекции на $\alpha$ и $\beta$ соответственно, а $A'$ и $B'$ --- их ограничения на $\beta$ и $\alpha$ соответственно. Тогда $A'$ и $B'$ --- изоморфизмы между $\alpha$ и $\beta$. А $R_\alpha=A'B'\colon \alpha\to\alpha$, $R_\beta=B'A'\colon\beta\to\beta$ --- операторы на $\alpha$ и $\beta$. Можно показать, что они оба симметрические. Если $v$ --- собственный вектор для $R_\alpha$, то $v'=B'v$ --- собственный для $R_\beta$, а натянутая на них плоскость --- искомая (и таковых будет в общем случае две).


Ваше доказательство кажется мне весьма правдоподобным, как минимум из того, что я синтетическими методами доказал, что если существует одна такая плоскость, то обязательно будет еще одна такая же плоскость. Но, к сожалению, большую часть Ваших рассуждений я не понял из-за недостатка образования. Если Вас это не затруднит, то могли бы Вы пояснить более приземленным языком, ну или подробнее расшифровать суть написанного или хотя бы дать направление где и что почитать, чтобы понять смысл того, что Вы написали.
Спасибо.

 
 
 
 Re: Доказательство теоремы в четырехмерном пространстве
Сообщение13.03.2019, 11:43 
vpb, хотя я и не полностью понял, что Вы мне написали, но все же теперь я думаю, что Ваше доказательство тоже содержит огрехи и вот почему:
Изображение
Возьмем некоторое пространство $\Omega$ и в нем плоскость $\alpha$ и точку $B_1$. Спроецируем ортогонально точку $B_1$ на плоскость $\alpha$ и получим проекцию точки $B_1$ - точку $A$. Возьмем некоторую точку $B$(на рисунке не показана) не принадлежащую пространству $\Omega$. Плоскость $\alpha$ и точка $B$ задают некоторое пространство $\Gamma$, которое отлично от пространства $\Omega$ и пересекается с ним по плоскости $\alpha$. В пространстве $\Gamma$ восстановим перпендикуляр к плоскости $\alpha$ из точки $A$ и на этом перпендикуляре выберем произвольно точку $B_2$. Плоскость $AB_1B_2$ обозначим как $\sigma$.
Плоскости $\alpha$ и $\sigma$ - гиперпенпендикулярны, т.е. любая прямая лежащая в плоскости $\sigma$ перпендикулярна любой прямой лежащей в плоскости $\alpha$ и эти плоскости пересекаются по точке $A$.
Выберем на плоскости $\alpha$ некоторую точку $C$ отличную от $A$. Проведем через точки $C$, $B_1$ и $B_2$ плоскость $\beta$. Плоскость $\beta$ пересекается с плоскостью $\alpha$ по точке $C$ и никаких других общих точек эти плоскости не имеют, т.к. в противном случае плоскости $\alpha$ и $\beta$ лежали бы в одном пространстве, а значит прямая $B_1B_2$ пересекала бы плоскость $\alpha$ и следовательно плоскость $\sigma$ тоже пересекала бы плоскость $\alpha$ по прямой, чего не может быть.
Итак, из выше сказанного следует, что проекцией точек $B_1$ и $B_2$ проскости $\beta$ является точка $A$ плоскости $\alpha$, а значит указанные Вами $A'$ и $B'$ не изоморфизмы между $\alpha$ и $\beta$.

 
 
 
 Re: Доказательство теоремы в четырехмерном пространстве
Сообщение13.03.2019, 13:08 
Аватара пользователя
george66
Ваш метод подводит то, что вы взяли подпространство общего положения. Я взял 3-сферу вокруг точки $C,$ и в ней получается похожая конструкция, но зато уж гарантированно дающая правильный ответ.

 
 
 
 Re: Доказательство теоремы в четырехмерном пространстве
Сообщение13.03.2019, 13:14 
Munin, не могли бы по подробней?

 
 
 
 Re: Доказательство теоремы в четырехмерном пространстве
Сообщение13.03.2019, 13:41 
Аватара пользователя
vpb в сообщении #1381509 писал(а):
Пусть $A$ и $B$ --- операторы ортогональной проекции на $\alpha$ и $\beta$ соответственно, а $A'$ и $B'$ --- их ограничения на $\beta$ и $\alpha$ соответственно. Тогда $A'$ и $B'$ --- изоморфизмы между $\alpha$ и $\beta$.

Если мы не вляпаемся в вырожденный случай $\operatorname{dim}(A\beta)<2$ или $\operatorname{dim}(B\alpha)<2$ (лень доказывать, что они $\Leftrightarrow$).

vpb в сообщении #1381509 писал(а):
и таковых будет в общем случае две

У меня не получается две.

-- 13.03.2019 13:42:17 --

Iro
Я писал поподробней (думая, что george66 прав), и всё стёр :-)

-- 13.03.2019 13:43:06 --

А, не стёр, щас выложу.

-- 13.03.2019 13:47:48 --

    Iro в сообщении #1381519 писал(а):
    То доказательство, что Вы привели, так же не кажется мне полным, т.к. общий перпендикуляр к скрещивающимся прямым не обязательно будет перпендикуляром к исходным плоскостям в которых лежат данные скрещивающиеся прямые.

    Мне тоже показалось, что не обязательно будет.

    Назовём пространство george66 $\Sigma.$ Прямые:
      $\Sigma\cap\alpha=s_a$
      $\Sigma\cap\beta=s_a$
      $s_a\perp s_c\perp s_b,\quad s_c\subset\Sigma$
    И наконец, плоскость, проходящую через $s_c$ и $C,$ назовём $\zeta.$ (Извините, вы много букв уже заняли, приходится выбирать из оставшихся.)

    Вопрос, является ли $\zeta$ искомой $\gamma.$ Это означает, что надо проверить $\zeta\perp^?_{1,1}\alpha,$ где $\perp_{1,1}$ - перпендикулярность 2-плоскостей, имеющих общую прямую. Это означает, что в любой общей точке $\zeta$ и $\alpha$ можно провести три прямых: одну общую для этих плоскостей, одну в $\zeta,$ перпендикулярную этой общей, и одну в $\alpha,$ также перпендикулярную общей. И обратно, если в какой-то общей точке такие три прямые нашлось, то нужная перпендикулярность есть, и три прямые найдутся в любой другой общей точке. Iro, вы согласны?

    А это можно проверить в 3-пространстве, в котором лежат $\zeta,\alpha.$ В нём оказываются $s_a,s_c,C,$ причём в таком положении: $s_a\perp s_c,$ а точка $C$ не лежит в плоскости, натянутой на $s_a$ и $s_c.$ Тогда оказывается, что в общем случае $\zeta\not\perp\alpha.$

    (Ненужный ошибочный черновик)

    Так вот. Общая прямая $\zeta\cap\alpha=z_a$ проходит через $C$ и точку пересечения $s_c\cap s_a=I_a.$ Проведём через точку $C$ две другие прямые. В плоскости $\alpha$ лежат прямые $z_a\ni C$ и $s_a\not\ni C,$ значит, можно восстановить к $z_a$ перпендикуляр в точке $C,$ и он пересечёт $s_a$ в какой-то точке $N_a.$ (Поскольку $\Sigma$ занимает общее положение, то этот перпендикуляр не окажется параллелен $s_a.$)

-- 13.03.2019 14:12:47 --

В какой-то момент мне тоже показалось, что будет два решения, но потом я понял, что они должны совпадать. (Я рассматривал функцию угла между двумя прямыми, одна лежит в $\alpha,$ другая - в $\beta,$ и у неё должны быть и максимум и минимум, но они достигаются для одной и той же пары прямых: просто для неё в одном случае считается угол $\varphi,$ а в другом - угол $(\pi-\varphi).$)

 
 
 
 Re: Доказательство теоремы в четырехмерном пространстве
Сообщение13.03.2019, 15:35 
Да, с трёхмерной сферой получается правильно. Если две исходных плоскости ортогональны (как xOy и zOw в пространстве xyzw), то нужных общих ортогональных плоскостей много (например xOz и yOw). Если не ортогональны, тогда, кажется, только одна.

 
 
 
 Re: Доказательство теоремы в четырехмерном пространстве
Сообщение13.03.2019, 16:30 
Munin
Munin в сообщении #1381576 писал(а):
Iro, вы согласны?


Не совсем. Нужно проверить не только перпендикулярность $\zeta$ и $\alpha$, но и одновременно с этим чтобы выполнялась перпендикулярность $\zeta$ и $\beta$, т.к. легко можно найти такую плоскость $\zeta$, которая будет перпендикулярна плоскости $\alpha$, но не будет перпендикулярна плоскости $\beta$ и наоборот, легко найти такую плоскость $\zeta$, которая будет перпендикулярна плоскости $\beta$, но не будет перпендикулярна плоскости $\alpha$.

Как я понял, Вы мне написали почему решение george66 неверно, но я спрашивал у Вас не про это, а про Ваш вариант доказательства с использованием 3-сферы.

Munin в сообщении #1381576 писал(а):
В какой-то момент мне тоже показалось, что будет два решения, но потом я понял, что они должны совпадать. (Я рассматривал функцию угла между двумя прямыми, одна лежит в $\alpha,$ другая - в $\beta,$ и у неё должны быть и максимум и минимум, но они достигаются для одной и той же пары прямых: просто для неё в одном случае считается угол $\varphi,$ а в другом - угол $(\pi-\varphi).$)


Если будет существовать одна такая плоскость, то вторая будет существовать гарантированно, я это могу доказать, правда не очень хочется, т.к. доказательство весьма громоздко, но я убедительно прошу поверить мне в этом. Если же данный факт действительно будет нужен для доказательства этой теоремы, то я могу написать его доказательство.
Расскажите пожалуйста детально как Вы рассматривали функцию угла, возможно Вы действовали так же как это можно сделать в трехмерном пространстве и у Вас закралась ошибка.

-- 13.03.2019, 17:46 --

george66
george66 в сообщении #1381611 писал(а):
Да, с трёхмерной сферой получается правильно.

Напишите пожалуйста это правильное доказательство с использованием трёхмерной сферы.
george66 в сообщении #1381611 писал(а):
Если две исходных плоскости ортогональны (как xOy и zOw в пространстве xyzw), то нужных общих ортогональных плоскостей много (например xOz и yOw).

Согласен с Вами.
george66 в сообщении #1381611 писал(а):
Если не ортогональны, тогда, кажется, только одна.

Если будет одна такая плоскость, то будет гарантированно и еще одна такая же.

 
 
 
 Re: Доказательство теоремы в четырехмерном пространстве
Сообщение13.03.2019, 18:40 
Результат того же рода, что построение общего перпендикуляра для не пересекающихся прямых в трёхмерном пространстве, только вместо пространства трёхмерная сфера, а вместо прямых большие окружности (плоскость, проходящая через начало координат в четырёхмерном пространстве, пересекает трёхмерную сферу по большой окружности). Как синтетически доказать, что у двух прямых в трёхмерном пространстве есть общий перпендикуляр?
С трёхмерной сферой идея такая: две наших плоскости пересекают трёхмерную сферу по большим окружностям. Эти окружности между собой не пересекаются (скрещиваются). Берём на них точки, между которыми наименьшее расстояние и через них проводим большую окружность, она будет общим перпендикуляром для них. Точно так же строится общий перпендикуляр для прямых в обычном трёхмерном пространстве. Но в трёхмерной сфере есть особый случай: если две исходных плоскости ортогональны, две соответствующие большие окружности лежат на постоянном расстоянии друг от друга (от любой точки первой до любой точки второй одинаковое расстояние), в этом случае общих перпендикуляров много. Вся тема изложена где-то в книжке Берже "Геометрия" (искать на слова "параллелизм Клиффорда")

 
 
 
 Re: Доказательство теоремы в четырехмерном пространстве
Сообщение13.03.2019, 20:52 
Это, кстати, то же самое, что угол между двумя прямыми, который рассматривал Munin (прямые, проходящие через начало координат, соответствуют точкам единичной сферы, угол между ними пропорционален расстоянию на сфере)

 
 
 
 Re: Доказательство теоремы в четырехмерном пространстве
Сообщение13.03.2019, 22:23 
Аватара пользователя
Вторая действительно есть! Но она соответствует не максимуму и минимуму, а (двум) седловым точкам! Или это та же самая? Уже не могу сказать.

 
 
 [ Сообщений: 63 ]  На страницу 1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group