В такой общей и неопределённой постановке советовать трудно. Какое число слагаемых принимается? (Если оно неограничено, можно дать тривиальный ответ, положив
,
и
, с точки зрения что интерполяции, что понимания процесса бессмысленный). Что известно о возможных значениях a, b и A (ну, скажем, A любые или только положительные?). Насколько близки меж собой могут быть значения
и как они соотносятся с периодом квантования
?
Работы по такого рода аппроксимации встречал
ftp://ftp.cs.wisc.edu/Approx/hangron.pdfhttps://www.sciencedirect.com/science/a ... 3610000467но такое впечатление, что там скорее общий подход, чем конкретный работающий алгоритм.
Линеаризующего преобразования, которое, как логарифм для степенной или экспоненциальной модели, сводило бы задачу к линейной (ценой порчи спецификации ошибки, что часто допустимо, но никогда не след забывать), для данной задачи я не знаю (если кто знает - поделитесь, крайне любопытно).
Если значения
"редкие", в том смысле, что между соседними ожидается большое число отсчётов данных, можно попытаться аппроксимировать участок с i-тым значением гауссианом (прологарифмировать и подогнать квадратичную параболу, положение её максимума даст
, а коэффициент при квадрате позволит оценить
. Влияние соседних гауссианов будет сравнительно мало. Однако если данные окажутся отягощены ошибкой, малые значения после логарифмирования станут большими отрицательными, отражая более ошибку, чем истинное значение, а иногда отрицательное окажется под логарифмом. Желательно не проводить параболу по трём точкам, а подгонять по отрезку достаточной длины (но если взять слишком длинный - там окажется соседний гауссиан), возможно, прибегнув к робастным методам оценивания. Оценив a и b, оценить A уже можно обычной линейной регрессией, где регрессоры будут соотноситься с разными гауссианами, а их значения - со значениями гауссианов в точках
Если такого "разнесения" не будет, задача сильно усложняется. Тут можно поискать в статистике, задача о разделении смесей распределений, (Estimation of Parameters for a Mixture of Normal Distributions), но там обычно подразумевается небольшое число слагаемых.
Нелинейный МНК существует, скажем, метод Левенберга-Марквардта (который состоит в том, что, имея начальное приближение для параметров регрессии, находим для выбранной нелинейной функции и этих параметров разность между наблюдаемыми значениями и вычисленными, которая становится регрессандом вспомогательной линейной модели, регрессорами же в ней значения производных этой функции в точках наблюдения при выбранных параметрах, тогда оцененный по вспомогательной модели вектор коэффициентов даст поправку к значениям параметров; поскольку матрица из производных часто оказывается мультиколлинеарна, расчёт регрессии загрубляется добавлением к диагонали положительных чисел, и если корреляционная матрица вырождена, получаем загрублённый, но осмысленный ответ вместо деления на ноль). Впрочем, можно и общими методами нелинейной оптимизации пользоваться, не востребовав специфику МНК.