2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Total Variation при отображении
Сообщение27.01.2018, 23:43 
Добрый день,

пусть есть две случайных величины $X$ и $Y$ определенные на одном вероятностном пространстве $(\Omega, \mathcal{F}, P)$. Нужно показать, что для любого отображения $T: \Omega \to \Omega$ справедливо $$\sup\limits_{A \in \mathcal{F}} |P(T(X) \in A) - P(T(Y) \in A)| \le \sup\limits_{A \in \mathcal{F}} |P(X \in A) - P(Y \in A)|$$

Я думаю, что это можно показать так: предположим противное и обозначим правую часть неравенства за $f^{\ast}$. Тогда должно найтись множество $\tilde{A} \in \mathcal{F}$ и число $\varepsilon > 0$ такие что
$$|P(T(X) \in \tilde{A}) - P(T(Y) \in \tilde{A})| > f^{\ast} + \varepsilon$$

Предположим, что отображение $T$ измеримо. Тогда рассмотрим измеримое множество $B \in \mathcal{F}$ такое что $t \in B \Leftrightarrow T(t) \in \tilde{A}$. Таким образом,
$$|P(T(X) \in \tilde{A}) - P(T(Y) \in \tilde{A})| = |P(X \in B) - P(Y \in B)| = f^{\ast} + \varepsilon $$

Получили противоречие.

У меня два вопроса:
1) правильное ли мое рассуждение
2) можно ли доказать утверждения для произвольного (неизмеримого) отображения

Спасибо!

 
 
 
 Re: Total Variation при отображении
Сообщение27.01.2018, 23:52 
stiv1995 в сообщении #1287875 писал(а):
$P(X \in A)$

Извините, это как?

 
 
 
 Re: Total Variation при отображении
Сообщение28.01.2018, 00:01 
Аватара пользователя
Попробую себя в телепатии: $X$ и $Y$ - это отображения $\Omega \to \Omega$.
stiv1995 в сообщении #1287875 писал(а):
правильное ли мое рассуждение
Правильное, но можно упростить (слева - супремум от почти того же выражения, что и справа, но по возможно меньшему множеству).
stiv1995 в сообщении #1287875 писал(а):
можно ли доказать утверждения для произвольного (неизмеримого) отображения
Его даже сформулировать нельзя - $P(T(X) \in A)$ может быть не определено.

 
 
 
 Re: Total Variation при отображении
Сообщение28.01.2018, 00:09 
mihaild в сообщении #1287882 писал(а):
Попробую себя в телепатии: $X$ и $Y$ - это отображения $\Omega \to \Omega$.

Что-то сомневаюсь. Я как-то вовсе не уверена, что прообраз события обязательно будет событием.

 
 
 
 Re: Total Variation при отображении
Сообщение28.01.2018, 00:12 
Аватара пользователя
Lia в сообщении #1287883 писал(а):
Я как-то вовсе не уверена, что прообраз события обязательно будет событием.
Измеримые. Т.е. в определении случайной величины вместо $\mathbb{R}$ берем $\Omega$.
(по крайней мере это относительно небольшое изменение, при котором рассуждения становятся осмысленными; может быть подразумевалось и что-то другое)

 
 
 
 Re: Total Variation при отображении
Сообщение28.01.2018, 00:23 
mihaild в сообщении #1287884 писал(а):
Lia в сообщении #1287883 писал(а):
Я как-то вовсе не уверена, что прообраз события обязательно будет событием.
Измеримые. Т.е. в определении случайной величины вместо $\mathbb{R}$ берем $\Omega$.
(по крайней мере это относительно небольшое изменение, при котором рассуждения становятся осмысленными; может быть подразумевалось и что-то другое)


$X$ - случайная величина, разве что-то не правильно?

 
 
 
 Re: Total Variation при отображении
Сообщение28.01.2018, 00:24 
Аватара пользователя
stiv1995 в сообщении #1287889 писал(а):
$X$ - случайная величина
Определение случайной величины напишите.

 
 
 
 Re: Total Variation при отображении
Сообщение28.01.2018, 00:27 
mihaild в сообщении #1287884 писал(а):
Измеримые. Т.е. в определении случайной величины вместо $\mathbb{R}$ берем $\Omega$.

Да это-то понятно, что Вы хотели сказать.
Интересно, что подразумевалось на самом деле.
Поскольку $(X\in A)$ событием все же будет, но вообще говоря, на другой сигма-алгебре событий, не $\mathcal F$, а вероятность $P$ определена именно на последней.

 
 
 
 Re: Total Variation при отображении
Сообщение28.01.2018, 00:36 
Аватара пользователя
Lia в сообщении #1287891 писал(а):
Поскольку $(X\in A)$ событием все же будет, но вообще говоря, на другой сигма-алгебре событий, не $\mathcal F$, а вероятность $P$ определена именно на последней.
Не очень понял. Если $X$ - измеримое отображение $\Omega \to \Omega$, то $X \in A$ - это ровно событие $X^{-1}(A) \in \mathcal{F}$.

 
 
 
 Re: Total Variation при отображении
Сообщение28.01.2018, 00:40 
mihaild в сообщении #1287890 писал(а):
stiv1995 в сообщении #1287889 писал(а):
$X$ - случайная величина
Определение случайной величины напишите.


Измеримое отображение из $\Omega$ в $\mathcal{X}$. Здесь $\mathcal{X} = \Omega$. Я для просты так написал, чтобы не определять еще одну алгебру.

 
 
 
 Re: Total Variation при отображении
Сообщение28.01.2018, 00:42 
Аватара пользователя
Ну т.е. я правильно угадал (обычно случайной величиной называется измеримое отображение в $\mathbb{R}$). По существу ответил в post1287882.html#p1287882

 
 
 
 Re: Total Variation при отображении
Сообщение28.01.2018, 00:47 
mihaild
А, ну если в таком смысле, то конечно. Я несколько иначе это поняла.

 
 
 
 Re: Total Variation при отображении
Сообщение28.01.2018, 01:06 
mihaild в сообщении #1287899 писал(а):
Ну т.е. я правильно угадал (обычно случайной величиной называется измеримое отображение в $\mathbb{R}$). По существу ответил в post1287882.html#p1287882


Да, большое вам спасибо!

 
 
 [ Сообщений: 13 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group